维内奇诺弦怎么得还会出吗

攻速最快电锯:维内奇诺弦 【18-12闯关】_崩坏学园2吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0可签7级以上的吧50个
本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:806,742贴子:
攻速最快电锯:维内奇诺弦 【18-12闯关】
视频来自:
坐等大神,回复,麻烦回...
犹豫了,买不买,怕是假的
一定要最快!最快!
放开那三国2经典卡牌手游新篇章!点击直接下载!各种畅玩礼包登录即可领取!
BGM:LIGHTS IN THE BABEL(Eris's the NextTower Remix) - ZYTOKINE
Saber啊,你怎么看
现在真想被顶,谁来帮我。
卧槽,这是扭蛋货吗
芙蕾雅能清盾?
垃圾东西,白送不都不要,这垃圾还藏着
吹死裱活,辣鸡玩意,配着辣鸡幻影更是辣鸡降临关我宁可刷喵神
蹦坏学圆2电脑版,享受高清大屏幕游戏,,快试试蹦坏学圆2电脑版吧蹦坏学圆2电脑版下载,战斗攻略,通过秘籍尽在靠谱助手,立即下载蹦坏学圆2电脑版
是的,稳的很
点亮12星座印记,
加强然后入扭蛋池吧,这才是正道
很好的武器,都是和狗牙还是有差距
这年头c90都能通关18-12了
还在吹再吹进蛋池了
我仔细一听这好像是莲妈的感情摩天楼魔改的啊......
如果好就会入蛋池,如果不入就会削弱
快删帖子 要不扭蛋货我就怼你
科学家的dalao?
没卵用开图鉴还要浪费我双月
又瞎带节奏
我们好好谈谈
打火机怎么样 还是玩具吗
妈的智障,老是有人带节奏,又要进扭蛋了估计—————————————————————“04.24,和梨衣去,梨衣说世界上最暖和的地方在天空树的顶上,但是,梨衣,有你在哪里都是最温暖的地方。”“04.26,和梨衣去,有人在那里举办婚礼,梨衣看上去很羡慕,不过没关系,以后你会比她们更加幸福的。”“04.25,和梨衣去鬼屋,梨衣很害怕,我抱着梨衣说别怕,有我在,我会保护你的。梨衣哭着说有我在最好了。是啊,我也是这么想的。”“梨衣在真好,遇见你真好,真的很好。”——有人问我:“你能爱绘梨衣多久?”我说:“我不知道,因为我也不清楚,自己能活多久——或许有一天,记忆会变得淡薄她的声音、她的举动我都会一一忘记也说不定就算那样我也会永远记得....自己曾经喜欢过一个叫上杉绘梨衣这么个笨笨的女孩.....
野生同袍帮暖
我也是醉了 干脆上一个狗牙 一个物理盾一个元素盾在配一个海拉
懒人福利切枪什么的实在太累
亲女儿芙蕾雅
贴吧热议榜
使用签名档&&
保存至快速回贴最近好忙好忙。。。
视频地址复制
Flash地址复制
Html地址复制
离线看更方便
用或其他应用扫描二维码
自制 15发每秒的射速,50%的麻痹几率,50%的移动速度,其他武器做得到吗?!!bgm是Ke$ha - TiK ToK和ICE BIRD STUDIO - UNDO某云都有下载。
广播电视节目制作经营许可证:(沪)字第1248号
网络文化经营许可证:沪网文[6号
信息网络传播视听节目许可证:0910417
互联网ICP备案:沪ICP备号-3
沪ICP证:沪B2-
违法不良信息举报邮箱:
违法不良信息举报电话: 转 3什么是弦理论/弦理论
弦理论弦理论(以及它的升级版超弦理论)认为所有的亚原子粒子都并非是点状粒子,而是类似于橡皮筋的弦。与粒子类型的唯一区别在于弦振动的频率差异。弦理论主要试图解决表面上不兼容的两个主要物理学理论——量子力学和广义相对论,并欲创造的描述整个宇宙的“万物理论”。然而这项理论非常难测试,并需要对我们所描绘的宇宙进行一些调整,也即宇宙一定存在比我们所知的四维空间更多的时空维度。科学家认为,这些隐藏的维度可能卷起到非常小,以至于我们没有发现它们。
模型建立/弦理论
弦理论较早时期所建立的粒子学说则是认为所有物质是由只占一度空间的“点”状粒子所组成,也是目前广为接受的物理模型,也很成功的解释和预测相当多的物理现象和问题,但是此理论所根据的“粒子模型”却遇到一些无法解释的问题。比如,在靠近粒子的地方的引力会增加至无限大。比较起来,“弦理论”的基础是“波动模型”,因此能够避开前一种理论所遇到的问题。更深的弦理论学说不只是描述“弦”状物体,还包含了点状、薄膜状物体,更高维度的空间,甚至平行宇宙。值得注意的是,弦理论目前尚未能做出可以实验验证的准确预测,关于这一点,以下文会说明。
发现历史/弦理论
五种弦线构成粒子-结构图表弦理论的雏形是在1968年由GabrieleVeneziano发现。有说法称,他原本是要找能描述原子核内的强作用力的数学函数,然后在一本老旧的数学书里找到了有200年之久的Β函数,这函数能够描述他所要求解的强作用力。事实并非如此,根据维内奇诺本人的说法,这个函数是他多年努力的结果,而那些“偶尔发现”以及“从数学书中发现”的传言令他本人很不高兴。不久后李奥纳特·苏士侃发现,这函数可理解为一小段类似橡皮筋那样可扭曲抖动的有弹性的“线段”,这在日后则发展成“弦理论”。
作用模式/弦理论
弦理论虽然弦理论最开始是要解出强相互作用力的作用模式,但是后来的研究则发现了所有的最基本粒子,包含正反夸克,正反电子,正反中微子等等,以及四种基本作用力“粒子”(强、弱作用力粒子,电磁力粒子,以及重力粒子),都是由一小段的不停抖动的能量弦线所构成,而各种粒子彼此之间的差异只是这弦线抖动的方式和形状的不同而已。
理论/弦理论
玻色弦理论26維玻色弦理論圖2最早期的弦论叫做玻色弦理论,南部阳一郎给出了最早的作用量,但是该作用量在场论的框架内难以量子化。此后亚历山大·泊里雅科夫给出了一个等效的作用量,其几何含义是把时空坐标视为一个世界面的标量场,并且在世界面上满足广义相对论的一般坐标变换规则。除此之外,如果要求这个作用量同时满足在外尔变化下不变,那么自然的会要求这个世界面是一个二维的曲面。玻色弦理论是最简单的一个弦论的模型,它最重要的物理图像是认为物理粒子不是单纯的点粒子,而是由于弦的振动产生的激发态。显然它有很大的缺点,其一是它只简单描述了标量玻色子,没有将费米子引入框架内;其二没有包含一般量子场论中的规范对称性;其三是当研究它的质量谱时候发现,它的真空态是一组质量平方小于零的不稳定快子。所有这些问题在推广到超弦理论后得到了很好的解释。在弦理论中,基本对象不是占据空间单独一点的基本粒子,而是一维的弦。这些弦可以有端点,或者他们可以自己连接成一个闭合圈环。正如小提琴上的弦,弦理论中支持一定的振荡模式,或者共振频率,其波长准确地配合。超弦理论另外,“弦理论”这一用词所指的原本包含了26维的玻色弦理论,和加入了超对称性的超弦理论。在近期的物理界,“弦理论”一般是专指“超弦理论”,而为了方便区分,较早的“玻色弦理论”则以全名称呼。1990年代,受弦对偶的启发,爱德华·维顿猜想存在一11维的M理论,他和其他学者找到强力的证据,显示五种不同版本的十维超弦理论与十一维超引力论其实应该是M理论的六个不同极限。这些发现带动了第二次超弦理论革新。弦理论与大一统理论弦理论会吸引这么多注意,大部分的原因是因为它很有可能会成为大一统理论。弦理论也可能是量子引力的解决方案之一。除了引力之外,它很自然的成功描述了各式作用力,包含了电磁力和其他自然界存在的各种作用力。超弦理论还包含了组成物质的基本粒子之一的费米子。至于弦理论能不能成功的解释基于目前物理界已知的所有作用力和物质所组成的宇宙,这还是未知数。至今研究员仍未能找到一个弦论模型,其低能极限为标准模型。额外维额外维是相对于"四维时空"而提出的一个概念,一般泛指的是理论在四维时空基础上扩展出来的其它维度。爱因斯坦提出宇宙是空间加时间组成的"四维时空"。1926年,德国数学物理学家西奥多·卡鲁扎在四维时空上再添加一个空间维,也就是添加一个第五维,把爱因斯坦的相对论方程加以改写,改写后的方程可以把当时已知的两种基本力即“电磁力”和“引力”很自然地统一在同一个方程中。至此,理论中存在额外添加的维度统称为“额外维”。D-膜由于超弦理论的时空维数为10维,所以很自然的可以认为有6个额外的维度需要被紧化。当对闭弦紧化时,可以发现所谓的T-对偶;而对开弦紧化则可以发现开弦的端点是停留在这些超曲面上的,并且满足Dirichlet边界条件。所以这些超曲面一般被称为“D膜”。研究员称D膜的动力学为“矩阵理论”(M理论),是为“M”字之一来源。
大一统/弦理论
弦理论会吸引这么多注意,大部分的原因是因为它很有可能会成为终极理论。目前,描述微观世界的量子力学与描述宏观引力的广义相对论在根本上有冲突,广义相对论的平滑时空与微观下时空剧烈的量子涨落相矛盾,这意味着二者不可能都正确,它们不能完整地描述世界。而除了引力之外,量子力学很自然的成功描述了其他三种基本作用力:电磁力、强力和弱力。弦理论也可能是量子引力的解决方案之一。超弦理论还包含了组成物质的基本粒子之一的费米子。至于弦理论能不能成功的解释基于目前物理界已知的所有作用力和物质所组成的宇宙以及应用到“黑洞”、“宇宙大爆炸”等需要同时用到量子力学与广义相对论的极端情况,这还是未知数。
相关报道/弦理论
最新一期的《环球科学》(2007.9)第10页题目为《我们身处十维空间?》中提到美国的费米国家加速器实验室在观察MiniBooNE探测器发射μ中微子束,看看到底有多少粒子在飞行途中转变成了电子中微子。2007年4月,研究人员公布了首批结果,基本上与粒子物理标准模型吻合。不过数据中也存在一个无法解释的异常现象。科学家推测导致这一现象的原因在于世界上还存在另一种中微子,它能穿越弦理论所预言的额外维度,走出一条捷径。这种粒子就是比其他三种中微子更诡异,它不像其他中微子那样受到微核力的作用,只能通过引力与其他物质发生相互作用。他就是于20世纪90年代找到的惰性中微子(假定存在)。
正确性/弦理论
而在这次实验中发生的情况十分符合弦理论模型,从而可以证明弦理论所预言的十维空间的正确性,也就肯定了弦理论。不过也有科学家谨慎地指出,这种相似性也许是一种离奇的巧合。MiniBooNE的研究人员正在重新审视他们的结果,以确定背景效应或分析失误会不会影响他们对电子中微子的计数。与此同时,帕斯(弦理论科学家)和他的同事也在进一步修正他们的理论。帕斯承认:“我们的理论粗看上去有一点投机取巧。不过我认为,仔细讨论一种可能的解释,看看它是否被证实,这也是绝对必要的。”
未来/弦理论
物理学家、《优雅的宇宙》(中译《宇宙的琴弦》)作者布赖恩·格林(Brian Greene)访谈过去一谈到弦论,人们就感到头晕脑胀,就算是弦论专家也烦恼不已;而其他物理学家则在一旁嘲笑它不能做出实验预测;普通人更是对它一无所知。科学家难以同外界说明为什么弦论如此刺激:为什么它有可能实现爱因斯坦对大统一理论的梦想,为什么它有助于我们深入了解“宇宙为何存在”这样深奥的问题。然而从1990年代中期开始,理论开始在观念上统合在一起,而且出现了一些可检验但还不够精确的预测。外界对弦论的关注也随之升温。今年7月,伍迪·艾伦在《纽约人》杂志的专栏上以嘲弄弦论为题材——也许这是第一次有人用“卡拉比-丘”空间理论来谈论办公室恋情。
观点/弦理论
谈话背景谈到弦论的普及,恐怕没有人能比得上布赖恩·格林。他是哥伦比亚大学的物理学教授,也是弦论研究的一员大将。他于1999年出版的《优雅的宇宙》(The Elegant Universe)一书在《纽约时报》的畅销书排行榜上名列第四,并入围了普利策奖的最终评选。格林是美国公共电视网Nova系列专辑的主持人,而他近期刚刚完成了一本关于空间和时间本质的书。《科学美国人》的编辑George Musser最近和格林边吃细弦般的意大利面边聊弦论,以下是这次“餐访”的纪要。评价弦理论SA:有时我们的读者在听到“弦论”或“宇宙论”时,他们会两手一摊说:“我永远也搞不懂它。”格林:我的确知道,人们在一开始谈到弦论或者宇宙论时会感到相当的吃力。我和许多人聊过,但我发现他们对于这些概念的基本兴趣是那么的广泛和深刻,因此,比起其他更容易的题材,人们愿意在这方面多花点心思。SA:我注意到在《优雅的宇宙》一书中,你在很多地方是先扼要介绍物理概念,然后才开始详细论述。实现突破与否,往往就取决于一点点洞察力格林:我发现这个法子很管用,尤其是对于那些比较难懂的章节。这样一来读者就可以选择了:如果你只需要简要的说明,这就够了,你可以跳过底下比较难的部分;如果你不满足,你可以继续读下去。我喜欢用多种方式来说明问题,因为我认为,当你遇到抽象的概念时,你需要更多的方式来了解它们。从科学观点来看,如果你死守一条路不放,那么你在研究上的突破能力就会受到影响。我就是这样理解突破性的:大家都从这个方向看问题,而你却从后面看过去。不同的思路往往可以发现全新的东西。判断SA:能不能给我们提供一些这种“走后门”的例子?格林:嗯,最好的例子也许是维顿(Edward Witten)的突破。维顿只是走上山顶往下看,他看到了其他人看不到的那些关联,因而把此前人们认为完全不同的五种弦论统一起来。其实那些东西都是现存的,他只不过是换了一个视角,就“砰”地一下把它们全装进去了。这就是天才。对我而言,这意味着一个基本的发现。从某种意义上说,是宇宙在引导我们走向真理,因为正是这些真理在支配着我们所看到的一切。如果我们受控于我们所看到的东西,那么我们就被引导到同一个方向。因此,实现突破与否,往往就取决于一点点洞察力,无论是真的洞察力还是数学上的洞察力,看是否能够将东西以不同的方式结合起来。SA: 如果没有天才,你认为我们会有这些发现吗?格林:嗯,这很难说。就弦论而言,我认为会的,因为里面的谜正在一点一点地变得清晰起来。也许会晚5年或10年,但我认为这些结果还是会出现。不过对于广义相对论,我就不知道了。广义相对论实在是一个大飞跃,是重新思考空间、时间和引力的里程碑。假如没有爱因斯坦,我还真不知道它会在什么时候以什么方式出现。SA:在弦论研究中,你认为是否存在类似的大飞跃?格林:我觉得我们还在等待这样一种大飞跃的出现。弦论是由许多小点子汇集而成的,许多人都做出了贡献,这样才慢慢连结成宏大的理论结构。但是,高居这个大厦顶端的究竟是怎么样的概念?我们现在还不得而知。一旦有一天我们真的搞清楚了,我相信它将成为闪耀的灯塔,将照亮整个结构,而且还将解答那些尚未解决的关键问题。采访相对论是对时间和空间重新思考的里程碑,我们正在等待另一次这样的飞跃SA:让我们来谈谈环量子理论与其他一些理论。你总是说弦论是唯一的量子引力论,你现在还这么认为吗?格林:呃,我认为弦论是目前最有趣的理论。平心而论,近来环量子引力阵营取得了重大的进展。但我还是觉得存在很多非常基本的问题没有得到解答,或者说答案还不能令我满意。但它的确是个可能成功的理论,有那么多极有天赋的人从事这项研究,这是很好的事。我希望,终究我们是在发展同一套理论,只是所采用的角度不同而已,这也是施莫林(Lee Smolin)所鼓吹的。在通往量子力学的路上,我们走我们的,他们走他们的,两条路完全有可能在某个地方相会。因为事实证明,很多他们所长正是我们所短,而我们所长正是他们所短。弦论的一个弱点是所谓的背景依赖(background-dependent)。我们必须假定一个弦赖以运动的时空。也许人们希望从真正的量子引力论的基本方程中能导出这样一个时空。他们(环量子引力研究者)的理论中的确有一种“背景独立”的数学结构,从中可以自然地推导出时空的存在。从另一方面讲,我们(弦论研究者)可以在大尺度的结构上,直接和爱因斯坦广义相对论连接起来。我们可以从方程式看到这一点,而他们要和普通的引力相连接就很困难。这样很自然地,我们希望把两边的长处结合起来。研究进展SA:在这方面有什么进展吗?格林:很缓慢。很少有人同时精通两边的理论。两个体系都太庞大,就算你单在你的理论上花一辈子时间,竭尽你的每一分每一秒,也仍然无法知道这个体系的所有进展。但是现在已经有不少人在沿着这个方向走,思考着这方面的问题,相互间的讨论也已经开始。SA:如果真的存在这种“背景依赖”,那么要如何才能真正深刻地理解时间和空间呢?格林:嗯,我们可以逐步解决这个难题。比如说,虽然我们还不能脱离背景依赖,我们还是发现了镜像对称性这样的性质,也说是说两种时空可以有相同的一套物理定律。我们还发现了时空的拓扑变化:空间以传统上不可置信的方式演化。我们还发现微观世界中起决定作用的可能是非对易几何,在那里坐标不再是实数,坐标之间的乘积取决于乘操作的顺序。这就是说,我们可以获得许多关于空间的暗示。你会隐约在这时看见一点,那里又看见一点,还有它们底下到底是怎么一回事。但是我认为,如果没有“背景独立”的数学结构,将很难把这些点点滴滴凑成一个整体。SA:镜像对称性真是太深奥了,它居然把时空几何学和物理定律隔离开来,可过去我们一直认为这二者的联系就是爱因斯坦说的那样。认识格林:你说的没错。但是我们并没有把二者完全分割开来。镜像对称只是告诉你遗漏了事情的另一半。几何学和物理定律是紧密相连的,但它就像是一副对折开的地图。我们不应该使用物理定律和几何学这个说法。真正的应该是物理-几何与几何-几何,至于你愿意使用哪一种几何是你自己的事情。有时候使用某一种几何能让你看到更多深入的东西。这里我们又一次看到,可以用不同的方式来看同一个物理系统:两套几何学对应同一套物理定律。对于某些物理和几何系统来说,人们已经发现只使用一种几何学无法回答很多数学上的问题。在引入镜像对称之后,我们突然发现,那些深奥无比的问题一下子变得很简单了。理论上可以导出许多不同的宇宙,其中我们的宇宙似乎是唯一适合我们生存的SA:弦论以及一般的现代物理学,似乎逼近一个非如此不可的逻辑结构;理论如此发展是因为再无他路可走。一方面,这与“人择”的方向相反;但是另一方面,理论还是有弹性引导你到“人择”的方向。格林:这种弹性是否存在还不好说。它可能是我们缺乏全面理解而人为造成的假像。不过以我目前所了解的来推断,弦论确实可以导出许多不同的宇宙。我们的宇宙可能只是其中之一,而且不见得有多么特殊。因此,你说得没错,这与追求一个绝对的、没有商量余地的目标是有矛盾的。置身于弦宇宙,时空可能像这样:另有6维卷曲在所谓的“卡拉比-丘空间”内。SA:如果有研究生还在摸索,你如何在方向上引导他们?格林:嗯,我想大的问题就是我们刚才谈到的那些。我们是否能穷究时间和空间的来源?我们能否搞清楚弦论或M理论的基本思想?我们能否证明这个基本思想能导出一个独特的理论?这个独特理论的独特解,也就是我们所知的这个世界?有没有可能借助天文观测或加速器实验来验证这些思想?甚至,我们能不能回过头来,了解为什么量子力学必然是我们所知世界不可或缺的一部分?任何可能成功的理论在其深层都得依赖一些东西:比如时间、空间、量子力学等,这其中有哪些是真正关键的,有哪些是可以省略掉仍能导出与我们世界相类似的结果?
相关问题/弦理论
物质最终单元在过去的一百多年里,物理学家已经发现了一连串越来越小和越来越基本的物质组成单元。这些研究成果最终被总结成为标准模型:轻子(象电子和中微子)、夸克以及将这些粒子捆绑在一起的电磁力、弱相互作用力。但是,标准模型并不是故事的结局,因为它实在是太复杂了,它本身并不能解释一个比元素周期表还要复杂的基本粒子表以及它们之间的相互用力。现在,弦理论家们普遍相信标准模型中的基本粒子实际上都是一些小而又小的振动的弦的闭合圈(称为闭合弦或闭弦),所有粒子都可由闭弦的不同振动和运动来得到,从本质上讲,所有的粒子都是质地相同的弦。这一听似奇怪的想法能够解释标准模型的许多粗旷轮廓和特性,但是在决定性实验验证弦理论之前,人们仍然有必要对它进行更深刻的认识和了解。量子力学的原理和广义相对论是否相冲突宇宙大爆炸的初始奇點-演化圖量子力学和广义相对论是二十世纪两个非常成功的理论,但令人惊讶的是这两个理论在现有的框架下是相冲突的。简单说来,量子力学认为没有任何东西是静止不动的,任何东西都有起伏涨落(测不准原理)。广义相对论认为时空是弯曲的,弯曲时空是万有引力的起源。将这两个理论结合就可以导出时空本身也是每时每刻都在经历着量子的起伏涨落。在大多数情况下,这些涨落是很小很小的,但在一些极端情况下,比如说在极短距离下、在黑洞的视界附近,在大爆炸的初始时刻等等,这些量子涨落将变得非常重要。在这些情况下,我们现有的理论(量子力学和广义相对论)是不适用的,只能得到一些结果为无穷大荒谬结论。很显然,我们需要一个更完备的理论。令人惊讶的是,从粒子物理学中发展起来的弦理论提供了这一问题的答案。在弦理论中,由于弦的延展性(一维而不是一个点),引力和光滑的时空观念在比弦尺度还小的距离下失去了意义,时空量子泡沬由“弦几何”代替了。现在,用弦理论已经解决了有关黑洞量子力学问题的一些疑难。如何用弦理论来说明宇宙大爆炸的初始奇点仍然是一个没有解决的大问题。11维时空宇宙学告诉我们,我们肉眼看到的三个空间维数正在膨胀,由此可以推测它们曾经是很小和高度弯曲的。一个自然的可能性是;也许存在与我们观测到的三个空间维数垂直的其它空间维数,这些额外空间维数曾经是但现在仍然是很小和高度弯曲的。如果这些维数的尺度是够小,以我们现有的观测手段仍不是以直接推测到,但是这些维数仍将以许多间接的效应表现出来。特别地,这是一个强有力的统一观念:在低维中观测到的不同粒子也可能是同一种粒子,在额外维数空间中,它们都是同一粒子不同方向的运动的表现。实际上,额外维数还是弦理论不可分割的一部分:弦理论的数学方程要求空间是9维的,再加上时间维度总共是10维时空。更进一步的研究表明,由M理论给出的更完全的认识揭示了弦理论的第10维空间方向,因此理论的最大维数是11维。最近的一些发展还提出了我们也许生活在低维的膜上面,但是引力仍然是10维的,为了得到现实的3维引力,可以通过引入“影子膜”或者Randall-Sundrum机制。Randall-Sundrum机制是一种束缚引力的新方法,这时,额外维度可以不是很小很小的。通过观测小距离情况下引力对平方反比定律的偏离,或者是在粒子加速上或者是通过超新星爆发中产生的粒子散射进入额外维度因而看起来象消失一样等等奇怪的现象,也许我们现在就有能力探测到这些额外维度。弦理论不仅大大地拓展了人们的思维空间,将大大地拓展人们的活动空间。
趣闻相关/弦理论
物理学是否有可能走另一条路,虽然面貌完全不同,但却能够解释所有的实验?我不知道,但是我觉得这是个很有意思的问题。从数据和数学逻辑出发,有多少我们认为基本的东西是唯一可能的结论?又有多少可以有其他可能性,而我们不过是恰恰发现了其中之一而已?在别的星球上的生物会不会有与我们完全不同的物理定律,而那里的物理学与我们一样成功?
国际弦理论大会/弦理论
2006年会议是在弦理论系列会议国际委员会建议下,由中国科学院晨兴数学中心、数学和系统科学研究院、理论物理研究所、浙江大学数学科学中心和美国自然科学基金会联合资助举办的,参加会议的有来自世界各地的600多名专家,霍金教授、格罗斯教授、威腾教授和斯特罗明格教授等多位著名理论物理学家将应邀参加会议并在大会上作报告。大卫·格罗斯教授2004年诺贝尔物理学奖获得者,2006年国际弦理论会议主席。现任美国加州大学SantaBarbara分校物理学教授,Kavli理论物理研究所所长,中科院理论物理所国际顾问委员会主席。格罗斯教授在理论物理,尤其是规范场、粒子物理和超弦理论等方面有一系列杰出的研究成果。他是强相互作用的基本理论——量子色动力学的奠基人之一。他还是“杂化弦理论”的发明人之一。1985年当选为美国科学与艺术学院院士,1986年当选美国国家科学院院士。爱德华·威腾(EdwardWitten)教授国际著名理论物理学家,现任普林斯顿高等研究院教授,查尔斯·西蒙(CharlesSimonyi)教授。他的研究遍布高能物理和数学物理的诸多方向,最擅长将近代数学与物理学研究的前沿问题结合起来,其应用的典范有:Wess-Zumino-Witten项与拓扑项、反常与指标定理、Dirac算子与正能定理、超对称与Morse理论等。他与Green和Schwarz教授合着的二卷本《超弦理论》自出版后一直是弦理论家的圣经。斯蒂芬·霍金当代享有盛誉的伟人之一,被称为“活着的爱因斯坦”。他在解决20世纪物理学的两个非常成功的理论——广义相对论和量子理论的冲突方面走出了重要的一步。日,霍金教授在《自然》杂志上发表论文,阐述了自己的新发现——黑洞是有辐射的(霍金辐射)。霍金的新发现被认为是多年来理论物理学最重要的进展。该论文被称为“物理学史上最深刻的论文之一”。安地·斯特罗明格教授现任哈佛大学教授,美国科学与艺术院院士,主要研究量子引力、弦理论和量子场论。在弦理论的研究中,斯特罗明格和他的合作者利用微观黑洞的变轻和凝聚成功地描述了时空拓扑变化的相变过程。此外,斯特罗明格和同事瓦法(C.Vafa)成功地利用弦理论和统计力学,导出了黑洞的贝肯斯坦-霍金(Bekerstein-Hawking)熵公式,这一结果提示弦理论也许能最终解决霍金提出的黑洞信息丢失疑难。国际著名数学家,2006年国际弦理论会议主席。现任美国哈佛大学教授,美国科学院院士,中国科学院外籍院士。丘成桐教授在科研方面做出了杰出的成就,赢得了许多荣誉。更为可贵的是,他十分关注中国基础研究的发展,并将其同自己的科研发展紧密联系在一起,多年来,一直运用他在国际上的影响和活动能力,协同各方面力量,为中国数学的发展做了大量的工作。
显示方式: |
拓扑学分类树
或意译位相几何学是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语“Τοπολογ?α”的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。
共有6个词条
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:46次
参与编辑人数:18位
最近更新时间: 15:30:40
贡献光荣榜

我要回帖

更多关于 崩坏学园节操存储 的文章

 

随机推荐