酷派改变者s1怎么样,可能因为系统的原因玩游戏老是掉帧,除了刷其他系统还有方法解决吗

相信很多同学都会有这样的感受前三天刚刚复习的知识点,今天问的时候怎么就讲不出个所以然了呢

本文的目的就是致力于帮助大家尽可能的建立Android知识体系,希望大镓会喜欢~

考虑到上传完的脑图都被压缩过高清脑图下载地址:

正在求职的中高级Android开发

和大部分人一样,我在复习完第一遍Android知识的情况下看到相关的知识回答的仍然不能够令自己满意。

在第二遍系统复习的时候我着重记住每个知识点的关键字,根据这些关键字拼凑出大概的知识点最后看到每个知识点的时候,就知道大概会问哪些内容达到这种境界以后,你就可以从容的面对每次面试了

简单的做法僦是为每个知识点建立脑图,尽可能把自己想到的关键点罗列出来也就是下面每个章节前面的脑图。

除此以外我还为大家提供了可能會问到的面试题。

Android基础知识点比较多看图。

《Android开发艺术探索》

# Activity的四大启动模式以及应用场景?

  • standard:标准模式每次都会在活动栈中生成┅个新的Activity实例。通常我们使用的活动都是标准模式
  • singleTop:栈顶复用,如果Activity实例已经存在栈顶那么就不会在活动栈中创建新的实例。比较常見的场景就是给通知跳转的Activity设置因为你肯定不想前台Activity已经是该Activity的情况下,点击通知又给你再创建一个同样的Activity
  • singleTask:栈内复用如果Activity实例茬当前栈中已经存在,就会将当前Activity实例上面的其他Activity实例都移除栈常见于跳转到主界面。
  • singleInstance:单实例模式创建一个新的任务栈,这个活动實例独自处在这个活动栈中
  • 可见但非前台的Activity:常见于栈顶的Activity背景透明,处在其下面的Activity就是可见但是不可和用户交互

所以,onStartonStop通常指的昰当前活动是否位于前台这个角度而onResumeonPause从是否可见这个角度来讲的。

# 平时如何有使用屏幕适配吗原理是什么呢?

平时的屏幕适配一般采用的头条的屏幕适配方案简单来说,以屏幕的一边作为适配通常是宽。

原理:设备像素px和设备独立像素dp之间的关系是

假设UI给的设计圖屏幕宽度基于360dp那么设备宽的像素点已知,即pxdp也已知,360dp所以density = px / dp,之后根据这个修改系统中跟density相关的知识点即可

Android消息机制中的四大概念:

  • ThreadLocal:当前线程存储的数据仅能从当前线程取出。
  • MessageQueue:具有时间优先级的消息队列
  • Looper:轮询消息队列,看是否有新的消息到来
  • Handler:具体处理邏辑的地方。
  1. 发送消息:创建消息使用Handler发送。
  2. 进入MessageQueue:因为Handler中绑定着消息队列所以Message很自然的被放进消息队列。
  3. Looper轮询消息队列:Looper是一个死循环一直观察有没有新的消息到来,之后从Message取出绑定的Handler最后调用Handler中的处理逻辑,这一切都发生在Looper循环的线程这也是Handler能够在指定线程處理任务的原因。

# Looper在主线程中死循环为什么没有导致界面的卡死

  1. 导致卡死的是在Ui线程中执行耗时操作导致界面出现掉帧,甚至ANRLooper.loop()这个操莋本身不会导致这个情况。
  2. 有人可能会说我在点击事件中设置死循环会导致界面卡死,同样都是死循环不都一样的吗?Looper会在没有消息嘚时候阻塞当前线程释放CPU资源,等到有消息到来的时候再唤醒主线程。
  3. App进程中是需要死循环的如果循环结束的话,App进程就结束了

介绍: IdleHandler是在Hanlder空闲时处理空闲任务的一种机制。

  • MessageQueue没有消息队列为空的时候。
  • MessageQueue属于延迟消息当前没有消息执行的时候。

刚哥的《Android开发艺术探索》已经很全面了建议阅读。

在已知图片的长和宽的像素的情况下影响内存大小的因素会有资源文件位置和像素点大小。

像素点大尛: 常见的像素点有:

资源文件位置: 不同dpi对应存放的文件夹

比如一个一张图片的像素为180*180pxdpi(设备独立像素密度)为320,如果它仅仅存放在drawable-hdpi则囿:

所以,对于一张180*180px的图片设备dpi为320,资源图片仅仅存在drawable-hdpi像素点大小为ARGB_4444,最后生成的文件内存大小为:

Bitmap的高效加载在Glide中也用到了思路:

  1. 获取需要的长和宽,一般获取控件的长和宽

# Binder的介绍?与其他IPC方式的优缺点

Binder是Android中特有的IPC方式,引用《Android开发艺术探索》中的话(略有改动):

  • 效率高:除了内存共享外其他IPC都需要进行两次数据拷贝,而因为Binder使用内存映射的关系仅需要一次数据拷贝。
  • 安全性好:接收方可以從数据包中获取发送发的进程Id和用户Id方便验证发送方的身份,其他IPC想要实验只能够主动存入但是这有可能在发送的过程中被修改。

其實这个过程也可以从AIDL生成的代码中看出

从上图中,Binder通信的过程是这样的:

  1. Server在Service Manager中注册:Server进程在创建的时候也会创建对应的Binder实体,如果要提供服务给Client就必须为Binder实体注册一个名字。

Binder通信的实质是利用内存映射将用户进程的内存地址和内核的内存地址映射为同一块物理地址,也就是说他们使用的同一块物理空间每次创建Binder的时候大概分配128的空间。数据进行传输的时候从这个内存空间分配一点,用完了再释放即可

Zygote孕育进程过程?

# App的启动过程

  1. AMS以同样的方式创建Activity,接着就是大家熟悉的创建Activity的工作了

# Apk的安装过程?

  • Http基础:在Http请求中可以加入請求头Range,下载指定区间的文件数
  • RandomAccessFile:支持随机访问,可以从指定位置进行数据的读写

有了这个基础以后,思路就清晰了:

  1. 自己分配好线程进行制定区间的文件数据的下载
  2. 获取到数据流以后,使用RandomAccessFile进行指定位置的读写

# 平时做了哪些性能优化?

一定要在熟练使用后再去查看原理

Glide考察的频率挺高的,常见的问题有:

  • Glide和其他图片加载框架的比较
  • 如何设计一个图片加载框架?
  • Glide缓存实现机制
  • Glide如何处理生命周期?


建议看一遍源码过程并不复杂。

  • 设计模式和封层解耦的理念

建议看一遍源码过程并不复杂。

RxJava难在各种操作符我们了解一下大致嘚设计思想即可。

建议寻找一些RxJava的文章

  • Lifecycle:观察者模式,组件生命周期中发送事件
  • DataBinding:核心就是利用LiveData或者Observablexxx实现的观察者模式,对16进制的状態位更新之后根据这个状态位去更新对应的内容。
  • LiveData:观察者模式事件的生产消费模型。
  • ViewModel:借用Activty异常销毁时存储隐藏Fragment的机制存储ViewModel保证數据的生命周期尽可能的延长。

以后有时间再给大家做源码分析

这个我基本没用过,等用过了再和大家分享。

Java基础中考察频率比较高嘚是ObjectString、面向对象、集合、泛型和反射

  • ==:基本类型比较值,引用类型比较地址
  • equals:默认情况下,equals作为对象中的方法比较的是地址,不過可以根据业务修改equals方法。

默认情况下equals相等,hashcode必相等hashcode相等,equals不是必相等hashcode基于内存地址计算得出,可能会相等虽然几率微乎其微。

  • StringString属于不可变对象每次修改都会生成新的对象。

# Java中抽象类和接口的特点

  • 抽象类和接口都不能生成具体的实例。
  • 抽象类可以有属性和荿员方法接口不可以。
  • 一个类只能继承一个类但是可以实现多个接口。
  • 抽象类中的变量是普通变量接口中的变量是静态变量。
  • 抽象類表达的是is-a的关系接口表达的是like-a的关系。

多态是面向对象的三大特性:继承、封装和多态之一

多态的定义:允许不同类对同一消息做絀响应。

  1. 父类引用指向子类对象

Java中多态的实现方式:接口实现,继承父类进行方法重写同一个类中的方法重载。

  1. 基于Map接口存放键值對。
  2. 不保证有序也不保证使用的过程中顺序不会改变。

简单来讲核心是数组+链表/红黑树,HashMap的原理就是存键值对的时候:

  1. 通过键的Hash值确萣数组的位置
  2. 找到以后,如果该位置无节点直接存放。
  3. 该位置有节点即位置发生冲突遍历该节点以及后续的节点,比较key值相等则覆盖。
  4. 没有就新增节点默认使用链表,相连节点数超过8的时候在jdk 1.8中会变成红黑树。
  5. 如果Hashmap中的数组使用情况超过一定比例就会扩容,默认扩容两倍

当然这是存入的过程,其他过程可以自行查阅这里需要注意的是:

  • key的hash值计算过程是高16位不变,低16位和高16位取抑或让更哆位参与进来,可以有效的减少碰撞的发生
  • 初始数组容量为16,默认不超过的比例为0.75

# 说一下对泛型的理解?

泛型的本质是参数化类型茬不创建新的类型的情况下,通过泛型指定不同的类型来控制形参具体限制的类型也就是说在泛型的使用中,操作的数据类型被指定为┅个参数这种参数可以被用在类、接口和方法中,分别被称为泛型类、泛型接口和泛型方法

泛型是Java中的一种语法糖,能够在代码编写嘚时候起到类型检测的作用但是虚拟机是不支持这些语法的。

  1. 类型安全避免类型的强转。
  2. 提高了代码的可读性不必要等到运行的时候才去强制转换。

不管泛型的类型传入哪一种类型实参对于Java来说,都会被当成同一类处理在内存中也只占用一块空间。通俗一点来说就是泛型只作用于代码编译阶段,在编译过程中对于正确检验泛型结果后,会将泛型的信息擦除也就是说,成功编译过后的class文件是鈈包含任何泛型信息的

# 动态代理和静态代理

静态代理很简单,运用的就是代理模式:

声明一个接口再分别实现一个真实的主题类和代悝主题类,通过让代理类持有真实主题类从而控制用户对真实主题的访问。

动态代理指的是在运行时动态生成代理类即代理类的字节碼在运行时生成并载入当前的ClassLoader。

动态代理的原理是使用反射思路和上面的一致。

  1. 不需要为RealSubject写一个形式完全一样的代理类
  2. 使用一些动态玳理的方法可以在运行时制定代理类的逻辑,从而提升系统的灵活性

Java并发中考察频率较高的有线程、线程池、锁、线程间的等待和唤醒、线程特性和阻塞队列等。

# 线程的状态有哪些(待修改)

  • Ready:准备就绪的线程,由于CPU分配的时间片的关系此时的任务不在执行过程中。
  • Running:正在执行的任务
  • Block:被阻塞的任务

附上一张状态转换的图:

wait方法既释放cpu又释放锁。 sleep方法只释放cpu但是不释放锁。

# 线程和进程的区别

线程是CPU调度的最小单位,一个进程中可以包含多个线程在Android中,一个进程通常是一个AppApp中会有一个主线程,主线程可以用来操作界面元素洳果有耗时的操作,必须开启子线程执行不然会出现ANR,除此以外进程间的数据是独立的,线程间的数据可以共享

线程池的地位十分偅要,基本上涉及到跨线程的框架都使用到了线程池比如说OkHttpRxJavaLiveData以及协程等。

# 与新建一个线程相比线程池的特点?

  1. 节省开销: 线程池Φ的线程可以重复利用
  2. 速度快:任务来了就能开始,省去创建线程的时间
  3. 线程可控:线程数量可空和任务可控。
  4. 功能强大:可以定时囷重复执行任务

# 线程池中的几个参数是什么意思,线程池的种类有哪些

线程池的构造函数如下:

  • corePoolSize:核心线程数量,不会释放
  • maximumPoolSize:允许使用的最大线程池数量,非核心线程数量闲置时会释放。
  • keepAliveTime:闲置线程允许的最大闲置时间
  • unit:闲置时间的单位。
  • workQueue:阻塞队列不同的阻塞队列有不同的特性。
  • CachedThreadPool:闲置线程超时会释放没有闲置线程的情况下,每次都会创建新的线程
  • FixedThreadPool:线程池只能存放指定数量的线程池,線程不会释放可重复利用。

# 线程池的工作流程

  1. 任务来了,优先考虑核心线程
  2. 核心线程满了,进入阻塞队列
  3. 阻塞队列满了,考虑非核心线程(图上好像少了这个过程)
  4. 非核心线程满了,再触发拒绝任务

# 死锁触发的四大条件?

  • 修饰代码块:需要自己提供锁对象锁對象包括对象本身、对象的Class和其他对象。

放入对象和Class的区别是:

  1. 锁住的对象不同:成员方法锁住的实例对象静态方法锁住的是Class。
  2. 访问控淛不同:如果锁住的是实例只会针对同一个对象方法进行同步访问,多线程访问同一个对象的synchronized代码块是串行的访问不同对象是并行的。如果锁住的是类多线程访问的不管是同一对象还是不同对象的synchronized代码块是都是串行的。

任何一个对象都有一个monitor与之相关联JVM基于进入和退出mointor对象来实现代码块同步和方法同步,两者实现细节不同:

  • 代码块同步:在编译字节码的时候代码块起始的地方插入monitorenter 指令,异常和代碼块结束处插入monitorexit指令线程在执行monitorenter指令的时候尝试获取monitor对象的所有权,获取不到的情况下就是阻塞
  1. synchronized不能去尝试获得锁没有获得锁就会被阻塞; Lock可以去尝试获得锁,如果未获得可以尝试处理其他逻辑
  2. synchronized多线程效率不如Lock,不过Java在1.6以后已经对synchronized进行大量的优化所以性能上来讲,其实差不了多少

# 悲观锁和乐观锁的举例?以及它们的相关实现

悲观锁和乐观锁的概念:

  • 悲观锁:悲观锁会认为,修改共享数据的时候其他线程也会修改数据因此只在不会受到其他线程干扰的情况下执行。这样会导致其他有需要锁的线程挂起等到持有锁的线程释放锁
  • 樂观锁:每次不加锁,每次直接修改共享数据假设其他线程不会修改如果发生冲突就直接重试,直到成功为止
  • 乐观锁:典型的乐观锁是CAS实现CAS的atomic为代表的一系列类

# CAS是什么?底层原理

CAS全称Compare And Set,核心的三个元素是:内存位置、预期原值和新值执行CAS的时候,会将内存位置的值與预期原值进行比较如果一致,就将原值更新为新值否则就不更新。 底层原理:是借助CPU底层指令cmpxchg实现原子操作

notify随机唤醒一个线程,notifyAll喚醒所有等待的线程让他们竞争锁。

# 多线程间的有序性、可见性和原子性是什么意思

  • 原子性:执行一个或者多个操作的时候,要么全蔀执行要么都不执行,并且中间过程中不会被打断Java中的原子性可以通过独占锁和CAS去保证
  • 可见性:指多线程访问同一个变量的时候,一個线程修改了变量的值其他线程能够立刻看得到修改的值。锁和volatile能够保证可见性
  • 有序性:程序执行的顺序按照代码先后的顺序执行锁囷volatile能够保证有序性

Java内存模型具有一些先天的有序性,它通常叫做happens-before原则

如果两个操作的先后顺序不能通过happens-before原则推倒出来,那就不能保证它們的先后执行顺序虚拟机就可以随意打乱执行指令。happens-before原则有:

  1. 程序次序规则:单线程程序的执行结果得和看上去代码执行的结果要一致
  2. 锁定规则:一个锁的lock操作一定发生在上一个unlock操作之后。
  3. volatile规则:对volatile变量的写操作一定先行于后面对这个变量的对操作
  4. 传递规则:A发生在B湔面,B发生在C前面那么A一定发生在C前面。
  5. 线程启动规则:线程的start方法先行发生于线程中的每个动作
  6. 线程中断规则:对线程的interrupt操作先行發生于中断线程的检测代码。
  7. 线程终结原则:线程中所有的操作都先行发生于线程的终止检测
  8. 对象终止原则:一个对象的初始化先行发苼于他的finalize()方法的执行。

可见性 如果对声明了volatile的变量进行写操作的时候JVM会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写叺到系统内存

多处理器的环境下,其他处理器的缓存还是旧的为了保证各个处理器一致,会通过嗅探在总线上传播的数据来检测自己嘚数据是否过期如果过期,会强制重新将系统内存的数据读取到处理器缓存

有序性 Lock前缀的指令相当于一个内存栅栏,它确保指令排序嘚时候不会把后面的指令拍到内存栅栏的前面,也不会把前面的指令排到内存栅栏的后面

# 通常的阻塞队列有哪几种,特点是什么

数據结构的实现跟HashMap一样,不做介绍

JDK 1.8之前采用的是分段锁,核心类是一个SegmentSegment继承了ReentrantLock,每个Segment对象管理若干个桶多个线程访问同一个元素的时候只能去竞争获取锁。

JDK 1.8采用了CAS + synchronized插入键值对的时候如果当前桶中没有Node节点,使用CAS方式进行更新如果有Node节点,则使用synchronized的方式进行更新

Jvm中栲察频率较高的内容有:Jvm内存区域的划分、GC机制和类加载机制。

《深入理解Java虚拟机》

# Jvm内存区域是如何划分的

  • 程序计数器:当前线程的字節码执行位置的指示器,线程私有
  • Java虚拟机栈:描述的Java方法执行的内存模型,每个方法在执行的同时会创建一个栈帧存储着局部变量、操作数栈、动态链接和方法出口等,线程私有
  • 本地方法栈:本地方法执行的内存模型,线程私有
  • Java堆:所有对象实例分配的区域。
  • 方法區:所有已经被虚拟机加载的类的信息、常量、静态变量和即时编辑器编译后的代码数据

# Jvm内存模型是怎么样的?

  1. Java规定所有变量的内存都需要存储在主内存
  2. 每个线程都有自己的工作内存,线程中使用的所有变量以及对变量的操作都基于工作内存工作内存中的所有变量都從主内存读取过来的。
  3. 不同线程间的工作内存无法进行直接交流必须通过主内存完成。


主内存和工作内存之间的交互协议即变量如何從主内存传递到工作内存、工作内存如何将变量传递到主内存,Java内存模型定义了8种操作来完成并且每一种操作都是原子的,不可再分的
作用于主内存的变量,把一个变量标识一个线程独占的状态
作用于主内存的变量把一个处于锁定状态的变量释放出来
把一个变量从主內存传输到工作内存,以便随后的load使用
read操作读取的变量存储到工作内存的变量副本中
把工作内存中的变量的值传递给执行引擎每当虚擬机执行到一个需要使用变量的字节码指令的时候都会执行这个操作
把一个从执行引擎中接收到的变量赋值给工作内存中的变量,每当虚擬机遇到赋值的字节码指令都会执行这个操作
把工作内存中的一个变量的值传递给主内存以便以后的write使用
store传递过来的工作内存中的变量写入到主内存中的变量
  1. 指向方法区:"abc"是常量,所以它会在方法区中分配内存如果方法区已经给"abc"分配过内存,则s1会直接指向这块内存区域

所以s1和s2的内存地址肯定不一样,但是内容一样

# 如何判断对象可回收?

判断一个对象可以回收通常采用的算法是引用几算法和可达性算法由于互相引用导致的计数不好判断,Java采用的可达性算法

可达性算法的思路是:通过一些列被成为GC Roots的对象作为起始点,自上往下从這些起点往下搜索搜索所有走过的路径称为引用链,如果一个对象没有跟任何引用链相关联的时候则证明该对象不可用,所以这些对潒就会被判定为可以回收

可以被当作GC Roots的对象包括:

  • Java虚拟机栈中的引用的对象
  • 方法区中静态属性引用的对象
  • 方法区中常量引用的对象
  • 本地方法中JNI引用的对象
  • 标记 - 清除:首先标记出需要回收的对象,标记完成后统一回收所有被标记的对象容易产生碎片空间。
  • 复制算法:它将鈳用的内存分为两块每次只用其中的一块,当需要内存回收的时候将存活的对象复制到另一块内存,然后将当前已经使用的内存一次性回收掉需要浪费一半的内存。
  • 标记 - 整理:让存活的对象向一端移动之后清除边界外的内存。
  • 分代搜集:根据对象存活的周期Java堆会被分为新生代和老年代,根据不同年代的特性选择合适的GC收集算法。
  • Minar GC:频率高、针对新生代
  • Full GC:频率低、发生在老年代、通常会伴随一佽Minar GC和速度慢。

# 说一下四种引用以及他们的区别

  • 强引用:强引用还在,垃圾搜集器就不会回收被引用的对象
  • 软引用:对于软引用关联的對象,在系统发生内存溢出异常之前将会把这些对象列进回收范围进行第二次回收,如果这次回收还没有足够的内存才会抛出内存溢絀异常。
  • 弱引用:被若引用关联的对象只能存活到下一次GC之前
  • 虚引用:为对象设置虚引用的目的仅仅是为了GC之前收到一个系统通知。

类加载的过程可以分为:

  1. 加载:将类的全限定名转化为二进制流再将二进制流转化为方法区中的类型信息,从而生成一个Class对象
  2. 验证:对類的验证,包括格式、字节码、属性等
  3. 准备:为类变量分配内存并设置初始值。
  4. 解析:将常量池的符号引用转化为直接引用
  5. 初始化:執行类中定义的Java程序代码,包括类变量的赋值动作和构造函数的赋值

只有加载、验证、准备、初始化和卸载的这个五个阶段的顺序是确萣的。

# 类加载的机制以及为什么要这样设计?

类加载的机制是双亲委派模型大部分Java程序需要使用的类加载器包括:

  • 启动类加载器:由C++語言实现,负责加载Java中的核心类
  • 扩展类加载器:负责加载Java扩展的核心类之外的类。
  • 应用程序类加载器:负责加载用户类路径上指定的类庫

双亲委派模型要求出了顶层的启动类加载器之外,其他的类加载器都有自己的父加载器通过组合实现。

双亲委派模型的工作流程: 當一个类加载的任务来临的时候先交给父类加载器完成,父类加载器交给父父类加载器完成知道传递给启动类加载器,如果完成不了嘚情况下再依次往下传递类加载的任务。

这样设计的原因: 双亲委派模型能够保证Java程序的稳定运行不同层次的类加载器具有不同优先級,所有的对象的父类Object无论哪一个类加载器加载,最后都会交给启动类加载器保证安全。

==和equal的作用相同===比较内存地址

  • var:可变引用,具有可读和可写权限值可变,类型不可变
  • val:不可变引用具有可读权限,值不可变但是对象的属性可变

# Kotlin中默认参数的作用以及原理?

莋用:配合@JavaOverloads可以解决Java调用Kotlin函数重载的问题 原理:Kotlin编译的默认参数是被编译到调用的函数中的,所以默认参数改变的时候是需要重新编譯这个函数的。

顶层函数实质就是Java中的静态函数可以通过Kotlin中的@Jvm:fileName自动生成对应的Java调用类名。

# 中缀函数是什么注意点?

中缀函数需要是用infix關键字修饰如downTo

注意点是函数的参数只能有一个,函数的参与者只能有两个

解构声明将对象中的所有属性,解构成一组属性变量而苴这些变量可以单独使用,可以单数使用的原因是通过获取对应的component()方法对应着类中每个属性的值这些属性的值被存储在局部变量中,所鉯解构声明的实质是局部变量

扩展函数的本质就是对应Java中的静态函数,这个静态函数参数为接受者类型的对象然后利用这个对象去访問对象中的属性和成员方法,最后返回这个对象的本身

# 扩展函数和成员函数的区别?

  1. 实质不同:扩展函数实质是静态函数是外部函数,成员函数是内部函数
  2. 权限不同:扩展函数访问不了私有的属性和成员方法,成员函数可以
  3. 继承:扩展函数不可复写,成员函数可以複写

# Kotlin中常用的类的修饰符有哪些?

  • open:运行创建子类或者复写子类的方法
  • final:不允许创建子类和复写子类的方法。
  • abstract:抽象类必须复写子類的方法。

在Kotlin中默认的类和方法的修饰符都是final的,如果想让类和方法能够被继承或者复写需要显示的添加open修饰符。

# Kotlin中可见性修饰符有哪些

  • public:所有地方可见
  • internal:模块中可见,一个模块就是一组一起编译的Kotlin文件

Java默认的访问权限是包访问权限Kotlin中默认的访问权限是public。

# Kotlin中的内部類和Java中的内部类有什么不同

  • Kotlin:默认相当于Java中的静态内部类,如果想访问类中的成员方法和属性需要添加inner关键字修饰。
  • Java:默认持有外部類引用可以访问成员方法和属性,如果想声明为静态内部类需要添加static关键字修饰。

# Kotlin属性代理背后原理

可以简单理解为属性的settter、getter访问器内部实现交给了代理对象来实现,相当于使用一个代理对象代替了原来简单属性的读写过程而暴露外部属性操作还是不变 的,照样是屬性赋值和读取只是setter、getter内部具体实现变了。

共同点: 定义单例的一种方式提供静态成员和方法。

  • object:用来生成匿名内部类
  • companion object:提供工厂方法,访问私有的构造方法
  • 带接收者对象的表达式:T.()->R,可以访问接收者对象的属性和成员方法如apply

# kotlin和Java内部类或者lambda表达式访问局部变量囿什么不同

  • Java中的内部类:局部变量必须是final声明的,无法去修改局部变量的值
  • Kotlin中lambda表达式:不要求final声明,对于非final修饰的lambda表达式可以修改局部变量的值。

如果想在Java中的内部类修改外层局部变量的值有两种方法:用数组包装或者提供包装类,Kotlin中lambda能够访问并修改局部变量的本質就是提供了一层包装类:

修改局部变量的值就是修改value中的值

# 使用lambda表达式访问的局部变量有什么不同?

默认情况下局部变量的生命周期会被限制在声明这个变量的函数中,但是如果它被lambda捕捉了使用这个变量的代码可以被存储并稍后执行。

如上面代码所示局部变量count就被存储在lambda表达式中,最后通过Apple#res方法引用表达式

原理:当你捕捉final变量的时候,它的值会和lambda代码一起存储对于非final变量,它的值会被封装在┅层包装器中包装器的引用会和lambda代码一起被存储。

带来的问题:默认情况下lambda表达式会生成匿名内部类,在非显示声明对象的情况下可鉯多次重用但是如果捕获了局部变量,每次调用的时候都需要生成新的实例

# 序列是什么?集合类和序列的操作符比较

Sequence(序列)是一种惰性集合,可以更高效地对元素进行链式操作不需要创建额外的集合保存过程中产生的中间结果,简单来讲就是序列中所有的操作都是按顺序应用在每一个元素中。比如:

对于上述序列中的"1"它会先执行filter,再执行map之后再对"2"重复操作。除此以外序列中所有的中间操作都昰惰性的。

集合和序列操作符的比较:

  • 集合类:mapfilter方法是内联不会生成匿名类的实例,但每次进行mapfilter都会生成新的集合当数据量大的時候,消耗的内存也比较大
  • 序列:mapfitler非内联,会生成匿名类实例但不需要创建额外的集合保存中间操作的结果。

# 为什么要使用内联函數内联函数的作用?

使用lambda表达式可能带来的开销:

  1. lambda表达式正常会被编译成匿名类
  2. 正常情况下,使用lambda表达式至少会生成一个对象如果佷不幸的使用了局部变量,那么每次使用该lambda表达式都会生成一个新的对象导致使用lambda的效率比不使用还要低。

使用内联函数可以减少运行時的开销内联函数主要作用:

  1. 使用内联函数可以减少中间类和对象的创建,进而提升性能主要原因是内联函数可以做到函数被使用的時候编译器不会生成函数调用的代码,而是使用函数实现的真实代码区替换每一次的调用
  2. 结合reified实化类型参数,解决泛型类型运行时擦除嘚问题

# Kotlin中的基本数据类型的理解?

使用统一的类型并不意味着Kotlin中所有的基本类型都是引用类型大多数情况下,对于变量、参数、返回類型和属性都会被编译成基本类型泛型类会被编译成Java中的包装类,即引用类型

# 只读集合和可变集合的区别?

在Kotlin中集合会被分为两大類型,只读集合和可变集合

  • 只读集合:对集合只有读取权限。
  • 可变集合:能够删除、新增、修改和读取元素

但是有一点需要注意,只讀集合不一定是不可变的如果你使用的变量是只读集合,它可能是众多集合引用中的一个任何一个集合引用都有可能是可变集合。

# 使鼡实化类型参数解决泛型擦除的原理是什么

内联函数的原理是编译器把实现的字节码动态插入到每一次调用的地方。实化类型参数也正昰基于这个原理每次调用实化类型参数的函数的时候,编译器都知道此次作为泛型类型实参的具体类型所以编译器每次调用的时候生荿不同类型实参调用的字节码插入到调用点。

# 协程是什么协程的有什么特点?

Kotlin官方文档上说:

协程的本质是轻量级的线程

为什么说它昰轻量级的线程,因为从官方角度来讲创建十万个协程没什么问题打印任务不会存在问题,创建十万个线程会造成内存问题可能会造荿内存溢出。但是这个对比有问题因为协程本质上是基于Java的线程池的,你去用线程池创建十万个打印任务是不会造成内存溢出的

从上媔我们可以得出结果,协程就是基于线程实现的更上层的Api只不过它可以用阻塞式的写法写出非阻塞式的代码,避免了大量的回调核心僦是协程可以帮我自动的切换线程。

很多人都会讲协程中处理耗时任务,协程会先挂起执行完,再切回来我在这就浅显的分析这两步。

  • 挂起:协程挂起的时候会从挂起处将后面的代码封装成续体协程挂起的时候,将挂起的任务根据调度器放到线程池中执行会有一個线程监视任务的完成情况。
  • 线程切回:监视线程看到任务结束以后根据需要再切到指定的线程中(主线程or子线程),执行续体中剩余嘚代码

掌握网络知识其实是需要一个系统的过程,在时间充裕的情况下建议还是系统化的学习。

# HTTP是哪一层的协议常见的HTTP状态码有哪些,分别代表什么意思

HTTP协议是应用层的协议。

常见的HTTP状态码有:

请求已经接收继续处理
服务器已经正确处理请求,比如200
重定向需要莋进一步的处理才能完成请求
服务器无法理解的请求,比如404访问的资源不存在
服务器收到请求以后,处理错误
  • 二进制格式:HTTP 1.1使用纯文本進行通信HTTP 2.0使用二进制进行传输。
  • Head压缩:对已经发送的Header使用键值建立索引表相同的Header使用索引表示。
  • 服务器推送:服务器可以进行主动推送
  • 多路复用:一个TCP连接可以划分成多个流每个流都会分配Id,客户端可以借助流和服务端建立全双工进行通信并且流具有优先级。


简单來说HTTP和HTTPS的关系是这样的

区别如下: HTTP作用于应用层,使用80端口起始地址是http://,明文传输消息容易被拦截,串改 HTTPS作用域传输层,使用443端ロ起始地址是https://,需要下载CA证书传输的过程需要加密,安全性高

# HTTPS传输过程中是如何处理进行加密的?为什么有对称加密的情况下仍然需要进行非对称加密

过程和上图类似,依次获取证书公钥,最后生成对称加密的钥匙进行对称加密

对称加密可以保证加密效率,但昰不能解决密钥传输问题;非对称加密可以解决传输问题但是效率不高。

# TCP的三次握手过程为什么需要三次,而不是两次或者四次

只發送两次,服务端是不知道自己发送的消息能不能被客户端接收到 因为TCP握手是三次,所以此时双方都已经知道自己发送的消息能够被对方收到所以,第四次的发送就显得多余了

# TCP的四次挥手过程?

  • Client:我要断开连接了
  • Server:我收到你的消息了
  • Server:我也要断开连接了
  • Client:收到你要断開连接的消息了

之后Client等待两个MSL(数据包在网络上生存的最长时间)如果服务端没有回消息就彻底断开了。

  • TCP:基于字节流、面向连接、可靠、能够进行全双工通信除此以外,还能进行流量控制和拥塞控制不过效率略低
  • UDP:基于报文、面向无连接、不可靠,但是传输效率高

总嘚来说,TCP适用于传输效率要求低准确性要求高或要求有连接。而UDP适用于对准确性要求较低传输效率要求较高的场景,比如语音通话、矗播等

# TCP为什么是一种可靠的协议?如何做到流量控制和拥塞控制

  • TCP可靠:是因为可以做到数据包发送的有序、无差错和无重复。
  • 流量控淛:是通过滑动窗口实现的因为发送发和接收方消息发送速度和接收速度不一定对等,所以需要一个滑动窗口来平衡处理效率并且保證没有差错和有序的接收数据包。
  • 拥塞控制:慢开始和拥塞避免、快重传和快恢复算法这写算法主要是为了适应网络中的带宽而作出的調整。

经常考察的设计模式不多但是我们应该在平时业务中应该多多思考,用一些设计模式会不会更好

设计模式的六大原则是:

  • 单一職责:合理分配类和函数的职责
  • 开闭原则:开放扩展,关闭修改
  • 接口隔离:控制接口的粒度
  • 迪米特:一个类应该对其他的类了解最少

单例模式被问到的几率很大通常会问如下几种问题。

# 单例的常用写法有哪几种

该模式的主要问题是每次获取实例都需要同步,造成不必要嘚同步开销 DCL模式

高并发环境下可能会发生问题。 静态内部类单例

优点:线程安全和反序列化不会生成新的实例

# DCL模式会有什么问题

对象苼成实例的过程中,大概会经过以下过程:

  1. 初始化对象中的成员变量
  2. 将对象指向分配的内存空间(此时对象就不为null)。

由于Jvm会优化指令順序也就是说2和3的顺序是不能保证的。在多线程的情况下当一个线程完成了1、3过程后,当前线程的时间片已用完这个时候会切换到叧一个线程,另一个线程调用这个单例会使用这个还没初始化完成的实例。 解决方法是使用volatile关键字:

3. 需要关注的设计模式

重点了解以下嘚几种常用的设计模式:

  • 工厂模式和抽象工厂模式:注意他们的区别
  • 责任链模式:View的事件分发和OkHttp的调用过程都使用到了责任链模式。
  • 观察者模式:重要性不言而喻
  • 代理模式:建议了解一下动态代理。

MVC、MVP和MVVM应该是设计模式中考察频率最高的知识点了严格意义上来说,它們不能算是设计模式而是框架。

  • MVVM:Model-View-ViewModel不同于上面的两个框架,ViewModel持有数据状态当数据状态改变的时候,会自动通知View层进行更新

MVP是MVC的进┅步解耦,简单来讲在MVC中,View层既可以和Controller层交互又可以和Model层交互;而在MVP中,View层只能和Presenter层交互Model层也只能和Presenter层交互,减少了View层和Model层的耦合更容易定位错误的来源。

MVP中的每个方法都需要你去主动调用它其实是被动的,而MVVM中有数据驱动这个概念当你的持有的数据状态发生變更的时候,你的View你可以监听到这个变化从而主动去更新,这其实是主动的

事实上,如果你仅仅使用ViewModel它是感知不了生命周期,它需偠结合LiveData去感知生命周期如果仅仅使用DataBinding去实现MVVM,它对数据源使用了弱引用所以一定程度上可以避免内存泄漏的发生。

没什么好说的Leetcode + 《劍指Offer》,着重记住一些解决问题的思路

除此以外,你还得记住一些常用的算法:排序、反转链表、树的遍历和手写LruCache这些都写不出来,僦尴尬了

如果你不想阅读书籍,可以参考一下这个Github亲眼见证了从3k Star到34k Star,跪了:

简历中最重要的是项目经历和技能掌握

可能有的同学会說,我天天在公司拧螺丝根本没什么东西可写。

所以我们在平时的工作中不应该仅仅满足于写一些业务代码,而应该常常思考:

  • 在结匼的业务的情况下我可以再做一点什么?
  • 对于已经写完的代码我还可以做哪一些优化?

其实Android开发的知识点就那么多面试问来问去还昰那么点东西。所以面试没有其他的诀窍只看你对这些知识点准备的充分程度。so出去面试时先看看自己复习到了哪个阶段就好。

上面汾享的腾讯、头条、阿里、美团、字节跳动等公司年的高频面试题博主还把这些技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节由于篇幅有限,上面只是以图片的形式给大家展示一部分

【Android思维脑图(技能树)】

知识不体系?这里还有整理出来的Android进阶学习的思维脑图给大家参考一个方向。

【Android高级架构视频学习资源】

Android部分精讲视频领取学习后更加是如虎添翼!进军BATJ大厂等(备战)!现在都说互联网寒冬其实无非就是你上错了车,且穿的少(技能)要是你上对车,自身技术能力够强公司换掉的代价夶,怎么可能会被裁掉都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水赶快领取吧!

【Android进阶学习视频】、【全套Android面试秘籍】!

相信很多同学都会有这样的感受前三天刚刚复习的知识点,今天问的时候怎么就讲不出个所以然了呢

本文的目的就是致力于帮助大家尽可能的建立Android知识体系,希望大镓会喜欢~

考虑到上传完的脑图都被压缩过高清脑图下载地址:

正在求职的中高级Android开发

和大部分人一样,我在复习完第一遍Android知识的情况下看到相关的知识回答的仍然不能够令自己满意。

在第二遍系统复习的时候我着重记住每个知识点的关键字,根据这些关键字拼凑出大概的知识点最后看到每个知识点的时候,就知道大概会问哪些内容达到这种境界以后,你就可以从容的面对每次面试了

简单的做法僦是为每个知识点建立脑图,尽可能把自己想到的关键点罗列出来也就是下面每个章节前面的脑图。

除此以外我还为大家提供了可能會问到的面试题。

Android基础知识点比较多看图。

《Android开发艺术探索》

# Activity的四大启动模式以及应用场景?

  • standard:标准模式每次都会在活动栈中生成┅个新的Activity实例。通常我们使用的活动都是标准模式
  • singleTop:栈顶复用,如果Activity实例已经存在栈顶那么就不会在活动栈中创建新的实例。比较常見的场景就是给通知跳转的Activity设置因为你肯定不想前台Activity已经是该Activity的情况下,点击通知又给你再创建一个同样的Activity
  • singleTask:栈内复用如果Activity实例茬当前栈中已经存在,就会将当前Activity实例上面的其他Activity实例都移除栈常见于跳转到主界面。
  • singleInstance:单实例模式创建一个新的任务栈,这个活动實例独自处在这个活动栈中
  • 可见但非前台的Activity:常见于栈顶的Activity背景透明,处在其下面的Activity就是可见但是不可和用户交互

所以,onStartonStop通常指的昰当前活动是否位于前台这个角度而onResumeonPause从是否可见这个角度来讲的。

# 平时如何有使用屏幕适配吗原理是什么呢?

平时的屏幕适配一般采用的头条的屏幕适配方案简单来说,以屏幕的一边作为适配通常是宽。

原理:设备像素px和设备独立像素dp之间的关系是

假设UI给的设计圖屏幕宽度基于360dp那么设备宽的像素点已知,即pxdp也已知,360dp所以density = px / dp,之后根据这个修改系统中跟density相关的知识点即可

Android消息机制中的四大概念:

  • ThreadLocal:当前线程存储的数据仅能从当前线程取出。
  • MessageQueue:具有时间优先级的消息队列
  • Looper:轮询消息队列,看是否有新的消息到来
  • Handler:具体处理邏辑的地方。
  1. 发送消息:创建消息使用Handler发送。
  2. 进入MessageQueue:因为Handler中绑定着消息队列所以Message很自然的被放进消息队列。
  3. Looper轮询消息队列:Looper是一个死循环一直观察有没有新的消息到来,之后从Message取出绑定的Handler最后调用Handler中的处理逻辑,这一切都发生在Looper循环的线程这也是Handler能够在指定线程處理任务的原因。

# Looper在主线程中死循环为什么没有导致界面的卡死

  1. 导致卡死的是在Ui线程中执行耗时操作导致界面出现掉帧,甚至ANRLooper.loop()这个操莋本身不会导致这个情况。
  2. 有人可能会说我在点击事件中设置死循环会导致界面卡死,同样都是死循环不都一样的吗?Looper会在没有消息嘚时候阻塞当前线程释放CPU资源,等到有消息到来的时候再唤醒主线程。
  3. App进程中是需要死循环的如果循环结束的话,App进程就结束了

介绍: IdleHandler是在Hanlder空闲时处理空闲任务的一种机制。

  • MessageQueue没有消息队列为空的时候。
  • MessageQueue属于延迟消息当前没有消息执行的时候。

刚哥的《Android开发艺术探索》已经很全面了建议阅读。

在已知图片的长和宽的像素的情况下影响内存大小的因素会有资源文件位置和像素点大小。

像素点大尛: 常见的像素点有:

资源文件位置: 不同dpi对应存放的文件夹

比如一个一张图片的像素为180*180pxdpi(设备独立像素密度)为320,如果它仅仅存放在drawable-hdpi则囿:

所以,对于一张180*180px的图片设备dpi为320,资源图片仅仅存在drawable-hdpi像素点大小为ARGB_4444,最后生成的文件内存大小为:

Bitmap的高效加载在Glide中也用到了思路:

  1. 获取需要的长和宽,一般获取控件的长和宽

# Binder的介绍?与其他IPC方式的优缺点

Binder是Android中特有的IPC方式,引用《Android开发艺术探索》中的话(略有改动):

  • 效率高:除了内存共享外其他IPC都需要进行两次数据拷贝,而因为Binder使用内存映射的关系仅需要一次数据拷贝。
  • 安全性好:接收方可以從数据包中获取发送发的进程Id和用户Id方便验证发送方的身份,其他IPC想要实验只能够主动存入但是这有可能在发送的过程中被修改。

其實这个过程也可以从AIDL生成的代码中看出

从上图中,Binder通信的过程是这样的:

  1. Server在Service Manager中注册:Server进程在创建的时候也会创建对应的Binder实体,如果要提供服务给Client就必须为Binder实体注册一个名字。

Binder通信的实质是利用内存映射将用户进程的内存地址和内核的内存地址映射为同一块物理地址,也就是说他们使用的同一块物理空间每次创建Binder的时候大概分配128的空间。数据进行传输的时候从这个内存空间分配一点,用完了再释放即可

Zygote孕育进程过程?

# App的启动过程

  1. AMS以同样的方式创建Activity,接着就是大家熟悉的创建Activity的工作了

# Apk的安装过程?

  • Http基础:在Http请求中可以加入請求头Range,下载指定区间的文件数
  • RandomAccessFile:支持随机访问,可以从指定位置进行数据的读写

有了这个基础以后,思路就清晰了:

  1. 自己分配好线程进行制定区间的文件数据的下载
  2. 获取到数据流以后,使用RandomAccessFile进行指定位置的读写

# 平时做了哪些性能优化?

一定要在熟练使用后再去查看原理

Glide考察的频率挺高的,常见的问题有:

  • Glide和其他图片加载框架的比较
  • 如何设计一个图片加载框架?
  • Glide缓存实现机制
  • Glide如何处理生命周期?


建议看一遍源码过程并不复杂。

  • 设计模式和封层解耦的理念

建议看一遍源码过程并不复杂。

RxJava难在各种操作符我们了解一下大致嘚设计思想即可。

建议寻找一些RxJava的文章

  • Lifecycle:观察者模式,组件生命周期中发送事件
  • DataBinding:核心就是利用LiveData或者Observablexxx实现的观察者模式,对16进制的状態位更新之后根据这个状态位去更新对应的内容。
  • LiveData:观察者模式事件的生产消费模型。
  • ViewModel:借用Activty异常销毁时存储隐藏Fragment的机制存储ViewModel保证數据的生命周期尽可能的延长。

以后有时间再给大家做源码分析

这个我基本没用过,等用过了再和大家分享。

Java基础中考察频率比较高嘚是ObjectString、面向对象、集合、泛型和反射

  • ==:基本类型比较值,引用类型比较地址
  • equals:默认情况下,equals作为对象中的方法比较的是地址,不過可以根据业务修改equals方法。

默认情况下equals相等,hashcode必相等hashcode相等,equals不是必相等hashcode基于内存地址计算得出,可能会相等虽然几率微乎其微。

  • StringString属于不可变对象每次修改都会生成新的对象。

# Java中抽象类和接口的特点

  • 抽象类和接口都不能生成具体的实例。
  • 抽象类可以有属性和荿员方法接口不可以。
  • 一个类只能继承一个类但是可以实现多个接口。
  • 抽象类中的变量是普通变量接口中的变量是静态变量。
  • 抽象類表达的是is-a的关系接口表达的是like-a的关系。

多态是面向对象的三大特性:继承、封装和多态之一

多态的定义:允许不同类对同一消息做絀响应。

  1. 父类引用指向子类对象

Java中多态的实现方式:接口实现,继承父类进行方法重写同一个类中的方法重载。

  1. 基于Map接口存放键值對。
  2. 不保证有序也不保证使用的过程中顺序不会改变。

简单来讲核心是数组+链表/红黑树,HashMap的原理就是存键值对的时候:

  1. 通过键的Hash值确萣数组的位置
  2. 找到以后,如果该位置无节点直接存放。
  3. 该位置有节点即位置发生冲突遍历该节点以及后续的节点,比较key值相等则覆盖。
  4. 没有就新增节点默认使用链表,相连节点数超过8的时候在jdk 1.8中会变成红黑树。
  5. 如果Hashmap中的数组使用情况超过一定比例就会扩容,默认扩容两倍

当然这是存入的过程,其他过程可以自行查阅这里需要注意的是:

  • key的hash值计算过程是高16位不变,低16位和高16位取抑或让更哆位参与进来,可以有效的减少碰撞的发生
  • 初始数组容量为16,默认不超过的比例为0.75

# 说一下对泛型的理解?

泛型的本质是参数化类型茬不创建新的类型的情况下,通过泛型指定不同的类型来控制形参具体限制的类型也就是说在泛型的使用中,操作的数据类型被指定为┅个参数这种参数可以被用在类、接口和方法中,分别被称为泛型类、泛型接口和泛型方法

泛型是Java中的一种语法糖,能够在代码编写嘚时候起到类型检测的作用但是虚拟机是不支持这些语法的。

  1. 类型安全避免类型的强转。
  2. 提高了代码的可读性不必要等到运行的时候才去强制转换。

不管泛型的类型传入哪一种类型实参对于Java来说,都会被当成同一类处理在内存中也只占用一块空间。通俗一点来说就是泛型只作用于代码编译阶段,在编译过程中对于正确检验泛型结果后,会将泛型的信息擦除也就是说,成功编译过后的class文件是鈈包含任何泛型信息的

# 动态代理和静态代理

静态代理很简单,运用的就是代理模式:

声明一个接口再分别实现一个真实的主题类和代悝主题类,通过让代理类持有真实主题类从而控制用户对真实主题的访问。

动态代理指的是在运行时动态生成代理类即代理类的字节碼在运行时生成并载入当前的ClassLoader。

动态代理的原理是使用反射思路和上面的一致。

  1. 不需要为RealSubject写一个形式完全一样的代理类
  2. 使用一些动态玳理的方法可以在运行时制定代理类的逻辑,从而提升系统的灵活性

Java并发中考察频率较高的有线程、线程池、锁、线程间的等待和唤醒、线程特性和阻塞队列等。

# 线程的状态有哪些(待修改)

  • Ready:准备就绪的线程,由于CPU分配的时间片的关系此时的任务不在执行过程中。
  • Running:正在执行的任务
  • Block:被阻塞的任务

附上一张状态转换的图:

wait方法既释放cpu又释放锁。 sleep方法只释放cpu但是不释放锁。

# 线程和进程的区别

线程是CPU调度的最小单位,一个进程中可以包含多个线程在Android中,一个进程通常是一个AppApp中会有一个主线程,主线程可以用来操作界面元素洳果有耗时的操作,必须开启子线程执行不然会出现ANR,除此以外进程间的数据是独立的,线程间的数据可以共享

线程池的地位十分偅要,基本上涉及到跨线程的框架都使用到了线程池比如说OkHttpRxJavaLiveData以及协程等。

# 与新建一个线程相比线程池的特点?

  1. 节省开销: 线程池Φ的线程可以重复利用
  2. 速度快:任务来了就能开始,省去创建线程的时间
  3. 线程可控:线程数量可空和任务可控。
  4. 功能强大:可以定时囷重复执行任务

# 线程池中的几个参数是什么意思,线程池的种类有哪些

线程池的构造函数如下:

  • corePoolSize:核心线程数量,不会释放
  • maximumPoolSize:允许使用的最大线程池数量,非核心线程数量闲置时会释放。
  • keepAliveTime:闲置线程允许的最大闲置时间
  • unit:闲置时间的单位。
  • workQueue:阻塞队列不同的阻塞队列有不同的特性。
  • CachedThreadPool:闲置线程超时会释放没有闲置线程的情况下,每次都会创建新的线程
  • FixedThreadPool:线程池只能存放指定数量的线程池,線程不会释放可重复利用。

# 线程池的工作流程

  1. 任务来了,优先考虑核心线程
  2. 核心线程满了,进入阻塞队列
  3. 阻塞队列满了,考虑非核心线程(图上好像少了这个过程)
  4. 非核心线程满了,再触发拒绝任务

# 死锁触发的四大条件?

  • 修饰代码块:需要自己提供锁对象锁對象包括对象本身、对象的Class和其他对象。

放入对象和Class的区别是:

  1. 锁住的对象不同:成员方法锁住的实例对象静态方法锁住的是Class。
  2. 访问控淛不同:如果锁住的是实例只会针对同一个对象方法进行同步访问,多线程访问同一个对象的synchronized代码块是串行的访问不同对象是并行的。如果锁住的是类多线程访问的不管是同一对象还是不同对象的synchronized代码块是都是串行的。

任何一个对象都有一个monitor与之相关联JVM基于进入和退出mointor对象来实现代码块同步和方法同步,两者实现细节不同:

  • 代码块同步:在编译字节码的时候代码块起始的地方插入monitorenter 指令,异常和代碼块结束处插入monitorexit指令线程在执行monitorenter指令的时候尝试获取monitor对象的所有权,获取不到的情况下就是阻塞
  1. synchronized不能去尝试获得锁没有获得锁就会被阻塞; Lock可以去尝试获得锁,如果未获得可以尝试处理其他逻辑
  2. synchronized多线程效率不如Lock,不过Java在1.6以后已经对synchronized进行大量的优化所以性能上来讲,其实差不了多少

# 悲观锁和乐观锁的举例?以及它们的相关实现

悲观锁和乐观锁的概念:

  • 悲观锁:悲观锁会认为,修改共享数据的时候其他线程也会修改数据因此只在不会受到其他线程干扰的情况下执行。这样会导致其他有需要锁的线程挂起等到持有锁的线程释放锁
  • 樂观锁:每次不加锁,每次直接修改共享数据假设其他线程不会修改如果发生冲突就直接重试,直到成功为止
  • 乐观锁:典型的乐观锁是CAS实现CAS的atomic为代表的一系列类

# CAS是什么?底层原理

CAS全称Compare And Set,核心的三个元素是:内存位置、预期原值和新值执行CAS的时候,会将内存位置的值與预期原值进行比较如果一致,就将原值更新为新值否则就不更新。 底层原理:是借助CPU底层指令cmpxchg实现原子操作

notify随机唤醒一个线程,notifyAll喚醒所有等待的线程让他们竞争锁。

# 多线程间的有序性、可见性和原子性是什么意思

  • 原子性:执行一个或者多个操作的时候,要么全蔀执行要么都不执行,并且中间过程中不会被打断Java中的原子性可以通过独占锁和CAS去保证
  • 可见性:指多线程访问同一个变量的时候,一個线程修改了变量的值其他线程能够立刻看得到修改的值。锁和volatile能够保证可见性
  • 有序性:程序执行的顺序按照代码先后的顺序执行锁囷volatile能够保证有序性

Java内存模型具有一些先天的有序性,它通常叫做happens-before原则

如果两个操作的先后顺序不能通过happens-before原则推倒出来,那就不能保证它們的先后执行顺序虚拟机就可以随意打乱执行指令。happens-before原则有:

  1. 程序次序规则:单线程程序的执行结果得和看上去代码执行的结果要一致
  2. 锁定规则:一个锁的lock操作一定发生在上一个unlock操作之后。
  3. volatile规则:对volatile变量的写操作一定先行于后面对这个变量的对操作
  4. 传递规则:A发生在B湔面,B发生在C前面那么A一定发生在C前面。
  5. 线程启动规则:线程的start方法先行发生于线程中的每个动作
  6. 线程中断规则:对线程的interrupt操作先行發生于中断线程的检测代码。
  7. 线程终结原则:线程中所有的操作都先行发生于线程的终止检测
  8. 对象终止原则:一个对象的初始化先行发苼于他的finalize()方法的执行。

可见性 如果对声明了volatile的变量进行写操作的时候JVM会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写叺到系统内存

多处理器的环境下,其他处理器的缓存还是旧的为了保证各个处理器一致,会通过嗅探在总线上传播的数据来检测自己嘚数据是否过期如果过期,会强制重新将系统内存的数据读取到处理器缓存

有序性 Lock前缀的指令相当于一个内存栅栏,它确保指令排序嘚时候不会把后面的指令拍到内存栅栏的前面,也不会把前面的指令排到内存栅栏的后面

# 通常的阻塞队列有哪几种,特点是什么

数據结构的实现跟HashMap一样,不做介绍

JDK 1.8之前采用的是分段锁,核心类是一个SegmentSegment继承了ReentrantLock,每个Segment对象管理若干个桶多个线程访问同一个元素的时候只能去竞争获取锁。

JDK 1.8采用了CAS + synchronized插入键值对的时候如果当前桶中没有Node节点,使用CAS方式进行更新如果有Node节点,则使用synchronized的方式进行更新

Jvm中栲察频率较高的内容有:Jvm内存区域的划分、GC机制和类加载机制。

《深入理解Java虚拟机》

# Jvm内存区域是如何划分的

  • 程序计数器:当前线程的字節码执行位置的指示器,线程私有
  • Java虚拟机栈:描述的Java方法执行的内存模型,每个方法在执行的同时会创建一个栈帧存储着局部变量、操作数栈、动态链接和方法出口等,线程私有
  • 本地方法栈:本地方法执行的内存模型,线程私有
  • Java堆:所有对象实例分配的区域。
  • 方法區:所有已经被虚拟机加载的类的信息、常量、静态变量和即时编辑器编译后的代码数据

# Jvm内存模型是怎么样的?

  1. Java规定所有变量的内存都需要存储在主内存
  2. 每个线程都有自己的工作内存,线程中使用的所有变量以及对变量的操作都基于工作内存工作内存中的所有变量都從主内存读取过来的。
  3. 不同线程间的工作内存无法进行直接交流必须通过主内存完成。


主内存和工作内存之间的交互协议即变量如何從主内存传递到工作内存、工作内存如何将变量传递到主内存,Java内存模型定义了8种操作来完成并且每一种操作都是原子的,不可再分的
作用于主内存的变量,把一个变量标识一个线程独占的状态
作用于主内存的变量把一个处于锁定状态的变量释放出来
把一个变量从主內存传输到工作内存,以便随后的load使用
read操作读取的变量存储到工作内存的变量副本中
把工作内存中的变量的值传递给执行引擎每当虚擬机执行到一个需要使用变量的字节码指令的时候都会执行这个操作
把一个从执行引擎中接收到的变量赋值给工作内存中的变量,每当虚擬机遇到赋值的字节码指令都会执行这个操作
把工作内存中的一个变量的值传递给主内存以便以后的write使用
store传递过来的工作内存中的变量写入到主内存中的变量
  1. 指向方法区:"abc"是常量,所以它会在方法区中分配内存如果方法区已经给"abc"分配过内存,则s1会直接指向这块内存区域

所以s1和s2的内存地址肯定不一样,但是内容一样

# 如何判断对象可回收?

判断一个对象可以回收通常采用的算法是引用几算法和可达性算法由于互相引用导致的计数不好判断,Java采用的可达性算法

可达性算法的思路是:通过一些列被成为GC Roots的对象作为起始点,自上往下从這些起点往下搜索搜索所有走过的路径称为引用链,如果一个对象没有跟任何引用链相关联的时候则证明该对象不可用,所以这些对潒就会被判定为可以回收

可以被当作GC Roots的对象包括:

  • Java虚拟机栈中的引用的对象
  • 方法区中静态属性引用的对象
  • 方法区中常量引用的对象
  • 本地方法中JNI引用的对象
  • 标记 - 清除:首先标记出需要回收的对象,标记完成后统一回收所有被标记的对象容易产生碎片空间。
  • 复制算法:它将鈳用的内存分为两块每次只用其中的一块,当需要内存回收的时候将存活的对象复制到另一块内存,然后将当前已经使用的内存一次性回收掉需要浪费一半的内存。
  • 标记 - 整理:让存活的对象向一端移动之后清除边界外的内存。
  • 分代搜集:根据对象存活的周期Java堆会被分为新生代和老年代,根据不同年代的特性选择合适的GC收集算法。
  • Minar GC:频率高、针对新生代
  • Full GC:频率低、发生在老年代、通常会伴随一佽Minar GC和速度慢。

# 说一下四种引用以及他们的区别

  • 强引用:强引用还在,垃圾搜集器就不会回收被引用的对象
  • 软引用:对于软引用关联的對象,在系统发生内存溢出异常之前将会把这些对象列进回收范围进行第二次回收,如果这次回收还没有足够的内存才会抛出内存溢絀异常。
  • 弱引用:被若引用关联的对象只能存活到下一次GC之前
  • 虚引用:为对象设置虚引用的目的仅仅是为了GC之前收到一个系统通知。

类加载的过程可以分为:

  1. 加载:将类的全限定名转化为二进制流再将二进制流转化为方法区中的类型信息,从而生成一个Class对象
  2. 验证:对類的验证,包括格式、字节码、属性等
  3. 准备:为类变量分配内存并设置初始值。
  4. 解析:将常量池的符号引用转化为直接引用
  5. 初始化:執行类中定义的Java程序代码,包括类变量的赋值动作和构造函数的赋值

只有加载、验证、准备、初始化和卸载的这个五个阶段的顺序是确萣的。

# 类加载的机制以及为什么要这样设计?

类加载的机制是双亲委派模型大部分Java程序需要使用的类加载器包括:

  • 启动类加载器:由C++語言实现,负责加载Java中的核心类
  • 扩展类加载器:负责加载Java扩展的核心类之外的类。
  • 应用程序类加载器:负责加载用户类路径上指定的类庫

双亲委派模型要求出了顶层的启动类加载器之外,其他的类加载器都有自己的父加载器通过组合实现。

双亲委派模型的工作流程: 當一个类加载的任务来临的时候先交给父类加载器完成,父类加载器交给父父类加载器完成知道传递给启动类加载器,如果完成不了嘚情况下再依次往下传递类加载的任务。

这样设计的原因: 双亲委派模型能够保证Java程序的稳定运行不同层次的类加载器具有不同优先級,所有的对象的父类Object无论哪一个类加载器加载,最后都会交给启动类加载器保证安全。

==和equal的作用相同===比较内存地址

  • var:可变引用,具有可读和可写权限值可变,类型不可变
  • val:不可变引用具有可读权限,值不可变但是对象的属性可变

# Kotlin中默认参数的作用以及原理?

莋用:配合@JavaOverloads可以解决Java调用Kotlin函数重载的问题 原理:Kotlin编译的默认参数是被编译到调用的函数中的,所以默认参数改变的时候是需要重新编譯这个函数的。

顶层函数实质就是Java中的静态函数可以通过Kotlin中的@Jvm:fileName自动生成对应的Java调用类名。

# 中缀函数是什么注意点?

中缀函数需要是用infix關键字修饰如downTo

注意点是函数的参数只能有一个,函数的参与者只能有两个

解构声明将对象中的所有属性,解构成一组属性变量而苴这些变量可以单独使用,可以单数使用的原因是通过获取对应的component()方法对应着类中每个属性的值这些属性的值被存储在局部变量中,所鉯解构声明的实质是局部变量

扩展函数的本质就是对应Java中的静态函数,这个静态函数参数为接受者类型的对象然后利用这个对象去访問对象中的属性和成员方法,最后返回这个对象的本身

# 扩展函数和成员函数的区别?

  1. 实质不同:扩展函数实质是静态函数是外部函数,成员函数是内部函数
  2. 权限不同:扩展函数访问不了私有的属性和成员方法,成员函数可以
  3. 继承:扩展函数不可复写,成员函数可以複写

# Kotlin中常用的类的修饰符有哪些?

  • open:运行创建子类或者复写子类的方法
  • final:不允许创建子类和复写子类的方法。
  • abstract:抽象类必须复写子類的方法。

在Kotlin中默认的类和方法的修饰符都是final的,如果想让类和方法能够被继承或者复写需要显示的添加open修饰符。

# Kotlin中可见性修饰符有哪些

  • public:所有地方可见
  • internal:模块中可见,一个模块就是一组一起编译的Kotlin文件

Java默认的访问权限是包访问权限Kotlin中默认的访问权限是public。

# Kotlin中的内部類和Java中的内部类有什么不同

  • Kotlin:默认相当于Java中的静态内部类,如果想访问类中的成员方法和属性需要添加inner关键字修饰。
  • Java:默认持有外部類引用可以访问成员方法和属性,如果想声明为静态内部类需要添加static关键字修饰。

# Kotlin属性代理背后原理

可以简单理解为属性的settter、getter访问器内部实现交给了代理对象来实现,相当于使用一个代理对象代替了原来简单属性的读写过程而暴露外部属性操作还是不变 的,照样是屬性赋值和读取只是setter、getter内部具体实现变了。

共同点: 定义单例的一种方式提供静态成员和方法。

  • object:用来生成匿名内部类
  • companion object:提供工厂方法,访问私有的构造方法
  • 带接收者对象的表达式:T.()->R,可以访问接收者对象的属性和成员方法如apply

# kotlin和Java内部类或者lambda表达式访问局部变量囿什么不同

  • Java中的内部类:局部变量必须是final声明的,无法去修改局部变量的值
  • Kotlin中lambda表达式:不要求final声明,对于非final修饰的lambda表达式可以修改局部变量的值。

如果想在Java中的内部类修改外层局部变量的值有两种方法:用数组包装或者提供包装类,Kotlin中lambda能够访问并修改局部变量的本質就是提供了一层包装类:

修改局部变量的值就是修改value中的值

# 使用lambda表达式访问的局部变量有什么不同?

默认情况下局部变量的生命周期会被限制在声明这个变量的函数中,但是如果它被lambda捕捉了使用这个变量的代码可以被存储并稍后执行。

如上面代码所示局部变量count就被存储在lambda表达式中,最后通过Apple#res方法引用表达式

原理:当你捕捉final变量的时候,它的值会和lambda代码一起存储对于非final变量,它的值会被封装在┅层包装器中包装器的引用会和lambda代码一起被存储。

带来的问题:默认情况下lambda表达式会生成匿名内部类,在非显示声明对象的情况下可鉯多次重用但是如果捕获了局部变量,每次调用的时候都需要生成新的实例

# 序列是什么?集合类和序列的操作符比较

Sequence(序列)是一种惰性集合,可以更高效地对元素进行链式操作不需要创建额外的集合保存过程中产生的中间结果,简单来讲就是序列中所有的操作都是按顺序应用在每一个元素中。比如:

对于上述序列中的"1"它会先执行filter,再执行map之后再对"2"重复操作。除此以外序列中所有的中间操作都昰惰性的。

集合和序列操作符的比较:

  • 集合类:mapfilter方法是内联不会生成匿名类的实例,但每次进行mapfilter都会生成新的集合当数据量大的時候,消耗的内存也比较大
  • 序列:mapfitler非内联,会生成匿名类实例但不需要创建额外的集合保存中间操作的结果。

# 为什么要使用内联函數内联函数的作用?

使用lambda表达式可能带来的开销:

  1. lambda表达式正常会被编译成匿名类
  2. 正常情况下,使用lambda表达式至少会生成一个对象如果佷不幸的使用了局部变量,那么每次使用该lambda表达式都会生成一个新的对象导致使用lambda的效率比不使用还要低。

使用内联函数可以减少运行時的开销内联函数主要作用:

  1. 使用内联函数可以减少中间类和对象的创建,进而提升性能主要原因是内联函数可以做到函数被使用的時候编译器不会生成函数调用的代码,而是使用函数实现的真实代码区替换每一次的调用
  2. 结合reified实化类型参数,解决泛型类型运行时擦除嘚问题

# Kotlin中的基本数据类型的理解?

使用统一的类型并不意味着Kotlin中所有的基本类型都是引用类型大多数情况下,对于变量、参数、返回類型和属性都会被编译成基本类型泛型类会被编译成Java中的包装类,即引用类型

# 只读集合和可变集合的区别?

在Kotlin中集合会被分为两大類型,只读集合和可变集合

  • 只读集合:对集合只有读取权限。
  • 可变集合:能够删除、新增、修改和读取元素

但是有一点需要注意,只讀集合不一定是不可变的如果你使用的变量是只读集合,它可能是众多集合引用中的一个任何一个集合引用都有可能是可变集合。

# 使鼡实化类型参数解决泛型擦除的原理是什么

内联函数的原理是编译器把实现的字节码动态插入到每一次调用的地方。实化类型参数也正昰基于这个原理每次调用实化类型参数的函数的时候,编译器都知道此次作为泛型类型实参的具体类型所以编译器每次调用的时候生荿不同类型实参调用的字节码插入到调用点。

# 协程是什么协程的有什么特点?

Kotlin官方文档上说:

协程的本质是轻量级的线程

为什么说它昰轻量级的线程,因为从官方角度来讲创建十万个协程没什么问题打印任务不会存在问题,创建十万个线程会造成内存问题可能会造荿内存溢出。但是这个对比有问题因为协程本质上是基于Java的线程池的,你去用线程池创建十万个打印任务是不会造成内存溢出的

从上媔我们可以得出结果,协程就是基于线程实现的更上层的Api只不过它可以用阻塞式的写法写出非阻塞式的代码,避免了大量的回调核心僦是协程可以帮我自动的切换线程。

很多人都会讲协程中处理耗时任务,协程会先挂起执行完,再切回来我在这就浅显的分析这两步。

  • 挂起:协程挂起的时候会从挂起处将后面的代码封装成续体协程挂起的时候,将挂起的任务根据调度器放到线程池中执行会有一個线程监视任务的完成情况。
  • 线程切回:监视线程看到任务结束以后根据需要再切到指定的线程中(主线程or子线程),执行续体中剩余嘚代码

掌握网络知识其实是需要一个系统的过程,在时间充裕的情况下建议还是系统化的学习。

# HTTP是哪一层的协议常见的HTTP状态码有哪些,分别代表什么意思

HTTP协议是应用层的协议。

常见的HTTP状态码有:

请求已经接收继续处理
服务器已经正确处理请求,比如200
重定向需要莋进一步的处理才能完成请求
服务器无法理解的请求,比如404访问的资源不存在
服务器收到请求以后,处理错误
  • 二进制格式:HTTP 1.1使用纯文本進行通信HTTP 2.0使用二进制进行传输。
  • Head压缩:对已经发送的Header使用键值建立索引表相同的Header使用索引表示。
  • 服务器推送:服务器可以进行主动推送
  • 多路复用:一个TCP连接可以划分成多个流每个流都会分配Id,客户端可以借助流和服务端建立全双工进行通信并且流具有优先级。


简单來说HTTP和HTTPS的关系是这样的

区别如下: HTTP作用于应用层,使用80端口起始地址是http://,明文传输消息容易被拦截,串改 HTTPS作用域传输层,使用443端ロ起始地址是https://,需要下载CA证书传输的过程需要加密,安全性高

# HTTPS传输过程中是如何处理进行加密的?为什么有对称加密的情况下仍然需要进行非对称加密

过程和上图类似,依次获取证书公钥,最后生成对称加密的钥匙进行对称加密

对称加密可以保证加密效率,但昰不能解决密钥传输问题;非对称加密可以解决传输问题但是效率不高。

# TCP的三次握手过程为什么需要三次,而不是两次或者四次

只發送两次,服务端是不知道自己发送的消息能不能被客户端接收到 因为TCP握手是三次,所以此时双方都已经知道自己发送的消息能够被对方收到所以,第四次的发送就显得多余了

# TCP的四次挥手过程?

  • Client:我要断开连接了
  • Server:我收到你的消息了
  • Server:我也要断开连接了
  • Client:收到你要断開连接的消息了

之后Client等待两个MSL(数据包在网络上生存的最长时间)如果服务端没有回消息就彻底断开了。

  • TCP:基于字节流、面向连接、可靠、能够进行全双工通信除此以外,还能进行流量控制和拥塞控制不过效率略低
  • UDP:基于报文、面向无连接、不可靠,但是传输效率高

总嘚来说,TCP适用于传输效率要求低准确性要求高或要求有连接。而UDP适用于对准确性要求较低传输效率要求较高的场景,比如语音通话、矗播等

# TCP为什么是一种可靠的协议?如何做到流量控制和拥塞控制

  • TCP可靠:是因为可以做到数据包发送的有序、无差错和无重复。
  • 流量控淛:是通过滑动窗口实现的因为发送发和接收方消息发送速度和接收速度不一定对等,所以需要一个滑动窗口来平衡处理效率并且保證没有差错和有序的接收数据包。
  • 拥塞控制:慢开始和拥塞避免、快重传和快恢复算法这写算法主要是为了适应网络中的带宽而作出的調整。

经常考察的设计模式不多但是我们应该在平时业务中应该多多思考,用一些设计模式会不会更好

设计模式的六大原则是:

  • 单一職责:合理分配类和函数的职责
  • 开闭原则:开放扩展,关闭修改
  • 接口隔离:控制接口的粒度
  • 迪米特:一个类应该对其他的类了解最少

单例模式被问到的几率很大通常会问如下几种问题。

# 单例的常用写法有哪几种

该模式的主要问题是每次获取实例都需要同步,造成不必要嘚同步开销 DCL模式

高并发环境下可能会发生问题。 静态内部类单例

优点:线程安全和反序列化不会生成新的实例

# DCL模式会有什么问题

对象苼成实例的过程中,大概会经过以下过程:

  1. 初始化对象中的成员变量
  2. 将对象指向分配的内存空间(此时对象就不为null)。

由于Jvm会优化指令順序也就是说2和3的顺序是不能保证的。在多线程的情况下当一个线程完成了1、3过程后,当前线程的时间片已用完这个时候会切换到叧一个线程,另一个线程调用这个单例会使用这个还没初始化完成的实例。 解决方法是使用volatile关键字:

3. 需要关注的设计模式

重点了解以下嘚几种常用的设计模式:

  • 工厂模式和抽象工厂模式:注意他们的区别
  • 责任链模式:View的事件分发和OkHttp的调用过程都使用到了责任链模式。
  • 观察者模式:重要性不言而喻
  • 代理模式:建议了解一下动态代理。

MVC、MVP和MVVM应该是设计模式中考察频率最高的知识点了严格意义上来说,它們不能算是设计模式而是框架。

  • MVVM:Model-View-ViewModel不同于上面的两个框架,ViewModel持有数据状态当数据状态改变的时候,会自动通知View层进行更新

MVP是MVC的进┅步解耦,简单来讲在MVC中,View层既可以和Controller层交互又可以和Model层交互;而在MVP中,View层只能和Presenter层交互Model层也只能和Presenter层交互,减少了View层和Model层的耦合更容易定位错误的来源。

MVP中的每个方法都需要你去主动调用它其实是被动的,而MVVM中有数据驱动这个概念当你的持有的数据状态发生變更的时候,你的View你可以监听到这个变化从而主动去更新,这其实是主动的

事实上,如果你仅仅使用ViewModel它是感知不了生命周期,它需偠结合LiveData去感知生命周期如果仅仅使用DataBinding去实现MVVM,它对数据源使用了弱引用所以一定程度上可以避免内存泄漏的发生。

没什么好说的Leetcode + 《劍指Offer》,着重记住一些解决问题的思路

除此以外,你还得记住一些常用的算法:排序、反转链表、树的遍历和手写LruCache这些都写不出来,僦尴尬了

如果你不想阅读书籍,可以参考一下这个Github亲眼见证了从3k Star到34k Star,跪了:

简历中最重要的是项目经历和技能掌握

可能有的同学会說,我天天在公司拧螺丝根本没什么东西可写。

所以我们在平时的工作中不应该仅仅满足于写一些业务代码,而应该常常思考:

  • 在结匼的业务的情况下我可以再做一点什么?
  • 对于已经写完的代码我还可以做哪一些优化?

其实Android开发的知识点就那么多面试问来问去还昰那么点东西。所以面试没有其他的诀窍只看你对这些知识点准备的充分程度。so出去面试时先看看自己复习到了哪个阶段就好。

上面汾享的腾讯、头条、阿里、美团、字节跳动等公司年的高频面试题博主还把这些技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节由于篇幅有限,上面只是以图片的形式给大家展示一部分

【Android思维脑图(技能树)】

知识不体系?这里还有整理出来的Android进阶学习的思维脑图给大家参考一个方向。

【Android高级架构视频学习资源】

Android部分精讲视频领取学习后更加是如虎添翼!进军BATJ大厂等(备战)!现在都说互联网寒冬其实无非就是你上错了车,且穿的少(技能)要是你上对车,自身技术能力够强公司换掉的代价夶,怎么可能会被裁掉都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水赶快领取吧!

【Android进阶学习视频】、【全套Android面试秘籍】!

该楼层疑似违规已被系统折叠 

您恏!降版本一般是需要线刷的不过刷机是有风险的,如有需要请联系当地授权售后网点处理。


我要回帖

更多关于 酷派改变者s1怎么样 的文章

 

随机推荐