微纳金属探针的主要作用3D打印技术应用:AFM探针

微纳加工技术随着器件小型化和高集成度的快速发展微电子工业的芯片制造工艺逐渐向10 nm 甚至单纳米尺度逼近时,传统的电子束曝光(electron beam lithographyEBL)技术和极紫外光刻(extreme ultraviolet lithography,EUV)技术已难以满足未来技术的发展需求亟需发展一种能在纳米尺度实现高分辨率、高稳定度、高重复性和大吞吐量且价格适宜的曝光技术。原子力显微術作为一种具有纳米级甚至原子级空间分辨率的表面探测表征技术其在微纳加工领域的应用为单纳米尺度的器件制备提供了新的思路和契机,具有广阔的应用前景[10]在过去的几十年中,基于AFM平台发展出的微纳加工技术得到更广泛的应用尤其是局域热蒸发刻蚀技术和低能場发射电子的刻蚀技术(如图4 所示),可以在大气环境下成功实现纳米尺度的图案加工并可及时对图案进行原位形貌表征,设备简单且使用方便AFM局......

 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置并利用计算机对所观察的对潒进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%使用紫外或可见光激发荧光探针,从而得到细胞或组织內部微细结构的荧光图像在亚细胞水平上观察生理信号及细

1.荧光标记杂交信号的检测方法使用荧光标记物的研究者最多,因而相应的探测方法也就最多、最成熟由于荧光显微镜可以选择性地激发和探测样品中的混合荧光标记物,并具有很好的空间分辨率和热分辨率特别是当荧光显微镜中使用了共焦激光扫描时,分辨能力在实际应用中可接近由数值孔径和光波长决定的空间分辨率而在传统

显微镜是實验室,特别是生物实验室必备的仪器配备量比较大,因此正确选购显微镜很重要不但能满足需要,还能节约经费一般我们可以从鉯下几个方面来考虑。  (1)显微镜按使用目镜的数目可分为单目、双目和三目显微镜一般用户如果要求比较简单,而且只是想要个便宜一点的显微镜那就选用单目显微镜,一般单目显微

 激光扫描共聚焦显微镜是采用激光作为光源在传统光学显微镜基础上采用共軛聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细

简介:体视显微镜又称“實体显微镜”“立体显微镜”或称“操作和解剖显微镜”,是一种具有正像立体感地显微镜被广泛地应用于材料宏观表面观察、失效分析、断口分析等工业领域。是一种具有正像立体感地目视仪器被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。 原理:体視显微镜的光路设计有两种

 工具显微镜主要有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置组成  (一)、镜座和镜臂  1、镜座  作用是支撑整个显微镜,装有反光镜有的还装有照明光源。  2、镜臂  作用是支撑镜筒和载物台分固定、可倾斜两种。  顯微镜的几种错误操作方法在大家使用显微镜的时候,有

看鱼病用什么显微镜鱼生病用什么仪器进行检查?用显微镜对病鱼进行检测嘚详细步骤如何对鱼病进行防治对鱼身上的寄生虫观测是检测鱼病的zui要方法之一,一般采用镜检用显微镜,解剖镜放大镜对鱼病进荇检测,简称镜检镜检是在鱼病情况比较复杂,仅凭肉眼不能作出正确诊断时而进行的更深层次的检查当一尾病鱼到

   工具显微镜昰一种精密的光学测量仪器,在正确使用的同时做好工具显微镜的日常维护也是非常重要的一环。注重工具显微镜的日常维护可以延長工具显微镜的使用时间并确保其能始终处于良好的工作状态中,以下是嘉腾仪器提供的一些维护建议  防潮:工具显微镜所处的环境是干燥的,相对湿度的不得高于60

偏光显微镜法观察聚合物球晶结构晶体和无定形体是聚合物聚集态的两种基本形式很多聚合物都能结晶。聚合物在不同条件下形成不同的结晶比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶球晶是聚合物中最常見的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶结晶聚合物材料的实际使用性

能否分辨物体的细节,主要决定于粅镜的分辨率(zui小可分辨距离)而分辨率又决定于物镜的数值孔径与光波波长。但是单有物镜的高分辨率,没有足够的放大倍数是鈈能满足显微观察要求的,相反放大倍数过高,也会使分辨率下降因此,要看清物象的细节保证物镜分辨率与足够的放大倍酞显微鏡zui合适的总放大倍数

  日前,舜宇仪器公司显微镜家族又添新丁DVST60N、DVSZMN视频显微镜相继问世,标志着该公司数码显微镜的开发迈上了一个噺台阶   视频显微镜是将显微镜看到的实物图像通过数模转换,使其成像在液晶显示屏上进行观察的显微镜它是光学显微镜技术、咣电转换技术完美结合的产物。从而使我们对微观领域

光学显微镜与体视显微镜的区别:(1)组成系统不同1、体视显微镜的系统由金相显徽镜和宏观摄像台组成的光学成像系统其用途是使金相试样或照片形成图像。体视显微镜可直接对金相试样进行定量金相分析;宏观摄潒台适用于分析金相照片、底片及实物等2、光学显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件

徕卡显微镜开发了一系列解决方案,以满足不同的应用和预算可实现更高的试样工作效率。与正置显微镜不同您只需将试样放置在工作台上,并聚焦到表媔一次便可对所有放大倍率和更多试样保持聚焦。试样切换速度可以加快4倍您还将受益于以下两个方面:工作空间大,可以轻松地定位大而沉重的试样徕卡显微镜允许您使用重

如何调节视频显微镜对于很少接触视频显微镜的用户来说,如何调节视频显微镜成了一个让囚摸不着头脑的事致使显微镜视频在成像的时候模糊不清,当然这其中不乏机器本身可能出现的各种故障但大多时候是由于我们自己調节不当所造成的,那么我们究竟应该如何进行视频显微镜的调试呢首先我们就得弄清楚什么是视频显微镜。从

如何挑选合适的显微镜不同显微镜对应不同的研究实验有不同功能,在选购之前应该先了解什么类型的显微镜适合您做实验的被检样品 显微镜根据观测样品嘚不同可以按功能来划分:一般有金相显微镜、偏光显微镜、体视显微镜、暗场显微镜、生物显微镜、荧光显微镜等。而不同的功能显微鏡用法也不同像偏光显微镜主用应用于像

简单来说,比较显微镜就是在两个并排放置的显微镜上通过一个视野进行观察,专用于光学顯微镜像比较的显微镜比较显微镜在结构上与其他类型显微镜相对比而言,并没有什么很特别的地方可以说就是把两台显微镜合并在哃一个镜架上,再由两个显微镜上所形成的像通过棱镜系统从两个半圆形的光阑中投射到一个双目镜筒的两个

显微镜知识_显微镜使用方法_显微镜正确使用步骤显微镜属于高端精密仪器,所以对于显微镜的操作一定要谨慎加小心这样才会对于显微镜有一个很好的保护作用,延长显微镜的使用寿命显微镜使用方法:1.显微镜的取送:①右手握镜臂;②左手托住镜座;③置于胸前。 2.显微镜的旋转:①镜筒朝前镜臂朝后;②置于观察者

今天和大家谈谈光学显微镜当中zui重要的部件:物镜。为什么是zui重要且没有之一呢因为科研工作者们关心的解析度、信噪比等与成像质量息息相关的参数都是由物镜决定的。当然显微镜的其他部分也一样不可或缺,但是篇幅有限即便是物镜,峩们也只能浅尝辄止的谈一谈 在生命科学研究领域,光学显微镜的

1、正确安装使用显微镜前首先要把显微镜的目镜和物镜安装上去。目镜的安装较为简单主要的问题在于物镜的安装,由于物镜镜头较贵重万一学生安装时螺纹没合好,易摔到地上造成镜头损坏,所鉯为了保险起见强调学生在安装物镜时要用左手食指和中指托住物镜,然后用右手将物镜装上去这样即使没安装好,也不会摔到地

1.体視显微镜的倍数观察如何适应不同要求体视显微镜用于对电子零件\集成线路板\转头刀具\磁铁等的立体检查和观察基于这些不同被测物体需要在不同倍数状态下观测,如何适应这些不同要求可通过多个方面来解决a.可通过光学性能 b.可选择视频观察 c.可通过机械性能 d.可通过光源照明光学性能:根据被测物体

金相显微镜的专业术语?金相显微镜是一种常用的光学仪器在多个行业中都有一定的应用。我们在使用金楿显微镜的时候对于它的专业术语都是需要了解的这对于用户的使用是非常重要的。下面小编就来为大家具体介绍一下金相显微镜的专業术语有哪些吧希望可以帮助到大家。数值孔径数值孔径是金相显微镜的物镜和聚光镜的主要技

1.体视显微镜的倍数观察如何适应不同要求 体视显微镜用于对电子零件\集成线路板\转头刀具\磁铁等的立体检查和观察基于这些不同被测物体需要在不同倍数状态下观测,如何适應这些不同要求可通过多个方面来解决a.可通过光学性能 b.可选择视频观察 c.可通过机械性能 d.可通过光源照明 光学性能:根据被

光学数码显微鏡具有显微摄像功能光学数码显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像光学数码显微镜是将显微镜看到的实物图像通过数模转换, 使其成像在计算机上。光学数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、液晶屏幕技術地结合在一起而开发研制成功的一项高科技产品

一、数值孔径数值孔径简写NA数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志其数值的大小,分别标刻在物镜和聚光镜的外壳上数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。用公式表示如下:NA=nsinu/2孔径角又称

一、实验目的了解金相显微镜的光学原理及影响光学成潒质量的因素;2.常用显微镜的构造及使用方法二、实验内容1.分组了解显微镜构造并熟悉操作2用显微镜观察试样。三、实验设备及材料金相显微镜和巳制备好的试样金相显微镜的种类和形式很多zui常用的有台式、立式和卧式三大类。金相显微镜通常有光学系统、照明系

  生物显微镜与金相显微镜的区别在哪里好多对显微镜不熟悉的人会问道这个问题,导致他们在选择显微镜的时候造成一定的困恼   生物显微镜与金相显微镜的区别:   首先他们用来观察的物体不一样,金相显微镜用于工业主要观察金属探针的主要作用、岩矿等的内部组织、及半导体、电子工业进行晶体、集成电路的检验和科学研究

奥林巴斯金相显微镜把变形的可能降至zui低  奥林巴斯金相显微镜以其紧凑的设计风格源于与光学系统的融合,这种系统能提供卓越的平场度、丰富的景深以及同样优质的清晰度、图像细节和准确嘚色彩,把变形的可能降至zui低奥林巴斯金相显微镜在完成范围日益扩大的生物显微镜观察中,可靠的品质和高性能的光学部件时

  分析测试百科网讯 近日农业部公布已批复的农业部都市农业(北方)重点实验室等15家重点实验室/科研基地设情况,共涉及仪器购置资金1.598亿え  表:农业部批复的 家重点实验室/科研基地仪器购置情况实验室/科研基地仪器购置经费(万元)仪器购置需求农业部都市农业(北方)重点实验室1371气相色谱

说到生物,大家就会想到一个一个形态各异的细胞但是要观察细胞形态的细微变化,一架性价比高的显微镜是必不可少的 从列文虎克发明第一架光学显微镜至今,显微镜为了满足观察者的需要而不断更新换代目前,生物细胞培养最常用的就是熒光显微镜可以用于观察绿色,红色和蓝色三种荧光 另外,从观察活细

奥林巴斯显微镜安全注意事项1:把奥林巴斯显微镜安装在固定、平坦桌面或工作台上不要堵塞镜基下面的通风口,不要把显微镜放在柔软表面上这样会堵住风口,造成过热或着火2:使用奥林巴斯显微镜,后面的灯室表面非常热安装奥林巴斯显微镜时,要在周围特别是灯室上方保留充分的散热空间(10cm以上)3:安装显

纳米加工新制造技术充分体现科技的魅力
    纳米技术已逐渐发展成为21世纪的三大主流技术(纳米技术、生物技术和空间信息技术)之一,也是多国研究的热点领域多国巳将纳米技术与产业的发展水平视作在未来经济中能否处于有利地位的关键问题,它的重要意义已受到外科技教育界的广泛认同

     纳米技術一般指纳米级(0.1~100nm)的材料、设计、制造、测量、控制和产品的研究、加工、制造以及应用技术。在基础科技以及制造行业中纳米制慥技术及纳米加工技术的研究从其诞生之初就一直牢牢占据行业的位置。   随着科学和工业的发展对加工精度提出了越来越高的要求,传統的机床及加工方法的加工精度已经远远不能满足飞速发展的消费及军工领域的需求如电子硅芯片、大规模集成电路,以及对表面粗糙喥值要求高的液晶面板等于是,人们把眼光投入到精度更高的加工技术上从初的毫米级,到微米级再到纳米级(千分之一微米),於是“纳米技术”这一概念就应运而生了。     21世纪以来由半导体微电子技术引发的微型化革命进入了一个新的时代,这就是纳米技术时玳纳米技术是制作和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm     功能结构的纳米化带来的不僅仅是能源与原材料的节省,而且会导致多功能的高度集成使生产成本大大降低。纳米技术不但推动着科技的进步而且造就了现代知識经济的物质基础。     纳米技术依赖于纳米尺度的功能结构与器件实现功能结构纳米化的基础是的纳米加工技术。现代纳米加工技术已经能够将数亿只晶体管制作在方才大小的芯片上小电路尺寸为45nm的集成电路芯片已经进入大批量生产阶段,32nm集成电路也开始试生产22nm的集成電路已经在研发阶段。除了集成电路芯片中的晶体管越做越小外纳米加工技术还可以将普通机械齿轮传动系统微缩到肉眼无法观察的尺団。还可以制作检测单个分子的传感器可以实现单个分子与原子操纵,还可以制作基于碳纳米管或纳米线的晶体管纳米加工技术可以搭建人类进入微观的桥梁,是人类了解及利用微观的工具因此,了解纳米加工技术对于理解纳米技术以及由纳米技术支撑的现代高科技产业是非常重要的。 另外纳米加工技术的应用领域也得到了很大拓展。到目前为止纳米加工技术已经被广泛应用于军工和民用产品Φ。主要的纳米加工技术的应用有规模集成电路技术,纳米电子技术、光电子技术、高密度磁存储技术、微机电系统技术、生物芯片技術及纳米技术等  所谓加工,是指运用各种工具将原材料改造成为具有某种用途的形状某些机械加工(如现代磨削或抛光加工)的精度鈳以达到微米或纳米量级,但这里的微米或纳米是指工件外形尺寸的精度而纳米加工不同于传统机械加工,其本质的区别是加工形成的蔀件或结构本身的尺寸在纳米量级  目前关于纳米制造领域的研究还主要集中于制取纳米材料,提示新的现象开发新的分析测试工具和淛造新的纳米功能器件等。形成纳米结构的加工技术主要采用两种方式:一是“自上而下”的方式二是“自下而上”的方式。目前虽嘫要实现工业化规模的纳米制造加工技术还有诸多难点,但随着科技的发展和进步纳米加工技术的发展前景还是被看好的。  Feynman提出的纳米加工方式该方法的基本工作原理就是一次又一次地削去材料的某些部分,即可得到逐步变小后的结构因此,“自上而下”的方式本质昰对块体材料进行切割处理获得所需的材料及结构,这与现代制造加工方法并无本质区别采用这种方法能达到的小特征尺寸取决于所使用的工具。这种纳米加工方式主要有以下几种方法:    (1)定型机械纳米加工:采用专用刀具可以通过刀具小的表面粗糙度值和切削刃精度来保证被加工工件的外形尺寸精度,小去除量能达到0.1nm为金刚石车削、微米铣削及微纳米磨削等。     LODTM型立式大型光学金刚石车床是全度高的超机床它采用恒温油淋浴系统,使油温控制在(20±0.005)℃消除了加工中的热变形,定位精度达28nm实现了直线误差为每米±25nm的加工,主要用于加工平面、球面和非球面激光核聚变工程的零件、红外线装置用零件以及大型天体望远镜、化学激光腔光学器件  美国Precitech公司和Moore公司是的商品化超机床制造商,两公司生产的系列化超机床代表了当今商品化超机床的技术水平和发展趋势Moore公司的Nanotech250UPL在加工直径为250mm的高纯合金铝球面镜时,金刚石超车削所能达到的加工精度面型误差(P-V)≤0.125?m表面粗糙度值Ra≤3.0nm。    大型CNC超磨床是大型关键零件超加工的重要设备它不但要求有,还要求机床的结构刚度高、传动刚度高、结构阻尼大    英国CRANFIELD精度工程研究所研制的OAGM2500大型CNC超磨床是美国Kodak-Rochester开发的加工大型离軸非球面光学零件的机床。可加工工件尺寸为:2.5m×2.5m×0.61m采用液体静压轴承和磨擦传动方式,激光干涉仪位置测量与反馈分辨率为2.5nm;平面加工精度可达1?m;表面粗糙度值Ra=2~3nm,加工的离轴非球面镜精度可达2.5?m抛光后再用Kodak公司的2.5m离子束抛光设备对零件进行修形处理,工件则可達到高的精度  为了实现大型光学自由曲面的磨削加工,国外研制的大型CNC超磨床采用了一种新的设计理念。这一理念优先考虑大载荷条件下磨粒切入深度的动态控制需要在磨削大尺寸玻璃、陶瓷部件的复杂形状及低陡度自由曲面时,可得到低的亚表面损伤该机床可用於加工直径1m的自由曲面光学镜与陶瓷材料,加工精度达1?m  FANUC公司于2004年研制出了ROBONANO超微细加工机床。该机床具有加工3D复杂自由曲面的能力系統地解决了超高微切削加工难题。该机床具有5轴铣、5轴车、5轴磨、5轴刨床和高速成型等加工功能切削时完全使用单点金刚石刀具。配有PZT(锆钛酸铅)压电陶瓷抛引器的3kHz快速刀具伺服系统该机床直线度可达到±2nm,分辨率可达0.000?01°,可用于加工镜面,微模具及其他小型超零部件。    超加工技术具有单项技术的限、常规技术的突破和新技术综合3个方面永无止尽追求的特点实现超加工需要具备许多条件。超加工機床是超加工重要、基本的加工设备是实现超加工的物质基础。    (2)磨粒纳米加工:是目前超加工的主要方法包括研磨技术、抛光技術和磨削技术。研磨手可以加工任何固态材料研磨已成为光学加工中一种非常重要的加工方法,起着不可替代的作用纳米级研磨加工方法主要有以下几种:①弹性发射加工。它是使用一种软的聚亚胺酯球(在微小压力下很容易发生变形)作为抛光工具同时控制旋转轴與加工工件的接触线保持45°。研磨用微粉粒径为亚微米,微粉与水混合,并强迫其在旋转的聚亚胺脂球面下方加工工件,并保持球与工件间的距离稍大于微粉尺寸。此法可以使被加工零件的表面(包括形状和变质层等)实现表面的要求。②磁流变抛光技术。磁流变抛光技术是利用磁流变液(它含有去离子水、铁质微粉、磨粒和经处理过的其他物质)的特性来改变其在磁场中的黏性磁流变液由泵驱动稳定地循環。在有磁力作用的区域时其表现为固体形态,进行研磨;而在无磁力作用时其表面为液体形态,两种形态在整个循环中交替出现甴于其黏度可以通过监控,使其变动范围保持在±1%内为此,磁流变抛光是一个可控的加工方法该方法不但材料去除能力(尺寸及去除量)的调节非常简单,而且被加工表面质量好从而可在保持相对高的、稳定的去除率的同时,加工出表面质量无损伤的表面。③固着磨料高速研磨技术固着磨料高速研磨技术是在20世纪60年代发展起来的,如针对铸铁结合剂金刚石固着磨料砂轮采用电解修整(ELID)。在线電解修锐磨削具具有以下几个特点:磨削过程具有良好的稳定性ELID修整可在研磨过程中控制磨粒锐度,使磨具始终保持率研磨的能力工件的表面质量也十分稳定;该修整法使金刚石砂轮不会过快磨损,提高了贵重磨料的利用率;该修整法使磨削过程具有良好的可控制性;采用ELID法磨削可以容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的残留裂纹采用该修整法修整的砂轮,对硬质合金和光学玻璃進行超研磨表面粗糙度值Ra分别达到10.7nm和16.7nm。④化学机械抛光技术化学机械抛光技术是利用固相反应抛光原理的加工方法,原则上可以加工任何材料为目前应用为广泛的一种抛光方法,其抛光质量高和效率较高技术比较成熟。此方法几乎是迄今可以提供全局平面化的表面精加工技术可广泛用于集成电路芯片、MENS系统、计算机硬磁盘、光学玻璃、蓝宝石、单晶硅、砷化镓及氮化硅等表面的平整化。都可以获嘚光滑无损伤表面(表面粗糙度值Ra约为0.1nm)    (3)非机械纳米加工:包括聚集离子束加工、微米级电火花加工、准分子激光加工和飞秒激光加工。    聚焦离子束加工主要包括定点切割、选择性的材料蒸镀、强化性蚀刻或选择性蚀刻及蚀刻终点侦测等方法目前商用机型的加工精喥可以低于25nm。     微米级电火花加工实现微细电火花加工的关键在于工具电(微小轴)的在线制作、微小能量放电电源、工具电的微量伺服進给、加工状态检测与系统控制以及加工工艺方法等。对微细电火花加工技术的不断研究探索已使其在与MENS制造结合及实用化方面取得了長足进展,其加工对象已由简单的圆截面微小轴、孔拓展到复杂的微小三维结构    准分子激光加工。由于准分子激光波长短(193~351nm)光子能量大,加工时的低热效应以及穿透深度小以及激光融化快速凝固所以可用来进行材料的去除(包括微加工、激光刻蚀等),另外还可鼡来对工件清洗、抛光对材料进行表面改性和冲击强化处理。  飞秒激光加工飞秒激光的加工机理与以往的长脉冲激光(CO2激光、Na:YAG激光)加工不同,它能以快的速度将其全部能量注入到很小的作用区域瞬间内高能量密度的沉积,可以避免线性吸收、能量转移和扩散过程等影响从本质上改变了激光与工作物质互相作用的机制,使其加工方式成为具有超高空间分辨率及超高加工广泛性的冷加工过程。这茬微电子、光子学及微光机电系统(MOEMS)等高技术领域应用前景巨大飞秒激光可以进行超精细微加工与常规激光相比具有以下几个特点:加工尺度小,可以实现超微细(亚微米至纳米级)加工;加工热影响区小可以实现的非热熔性加工。飞秒激光没有热扩散加工边缘整齊及精度高;能克服等离子体屏蔽,具有稳定的加工阈值加工效率高;飞秒激光加工过程具有严格的空间定位能力,可实现透明材料内蔀的任意位置的三维超精细加工;飞秒激光的峰值功率高可实现对任何材料的精细加工,而与材料的种类及特性无关飞秒激光可以微細加工玻璃、陶瓷、各种电介质材料、各种半导体、聚合物以及各种生物材料乃至生物组织,特别是对熔点相对较低且固导热性好而易產生热扩散的金属探针的主要作用材料进行的微细加工。  (4)光刻加工:采用光刻方法在物体上制作纳米级图案需要大幅度提高光刻加笁的分辨率。光刻加工主要用于制造二维形状在制造三维立体外形时受较大限制。目前常用的方法有以下几种:①光学曝光曝光是芯爿制造中关键的制造工艺,光学曝光技术不断创新现代曝光技术不仅要求高的分辨率,而且要有工艺宽容度和经济性1997年美国GCA公司推出叻世上台分步重复投影曝光机,被视为曝光技术的一大里程碑②X射线光刻技术。X射线光刻采用软X射线波段光源是一种接近式光刻。此技术具有分辨率高、曝光相场大、焦源大、工艺简单、光刻工艺宽容度大、产量大、X射线掩模可以自复制、与集成电路工艺兼容性好、光刻分辨率技术延伸性大及技术成熟等优点此技术能满足规模集成电路迅猛发展的需求,已成为光刻技术的研究的热点③电子束直写光刻技术。电子束具有波长短、分辨率高 深长、易于控制和修改灵活等特点,广泛应用于光学和非光学曝光的掩模制造在系统集成芯片嘚开发中,电子束直写比其他方法更具灵活性它可直接接受图形数据成像,无需复杂的掩模制作因此前景十分诱人。采用电子束曝光淛作的小器件尺寸可达10~20nm④纳米压印技术。纳米压印技术是华裔科学家周郁在1995年发明的一种光刻技术纳米压印是加工聚合物结构的常鼡方法,它采用高分辨率电子束等方法将结构复杂的纳米结构图案制在印章上然后用预先图案化的印章使聚合物材料变形而在聚合物上形成结构图案。此技术主要包括:热压印、紫外压印、微接触印刷该方法的显著优点是速度快、环节少、成本低。纳米压印已成为纳米研究领域的一个热点现在可以达到亚10nm以下的分辨率,这已经超过目前的光学光刻技术——沉浸光刻纳米压印技术已被半导体技术路线圖收录为下一代光刻技术的候选,有些在2013年用于32nm的结点该技术已用于诸多领域,如混合塑料电子学有机薄膜晶体管和电子学,Si及GaAS上的納米电子器件 有机激光光子学,衍射光学器件波导偏振器高密度量子磁盘等磁器件及纳米尺度蛋白质图案化等。纳米压印采用聚合物襯底因此适合于纳米加工的领域很广,如生物化学、化学、生命科学、微光学应用、纳米流体及数据存储等⑤端远紫外光刻技术。端遠紫外光刻技术是用波长为11~14nm的光经过周期性多层膜反射镜照射到掩模上,反射出的远紫外光再经过投影系统将掩模图形形成在硅片嘚光刻胶上。该技术是有些突破特征尺寸达到100nm以下的新光刻技术之一。2001年国外已制备出灵敏度为5mJ/cm2的远紫外光刻胶,使曝光后剩余的光刻胶胶厚达到140nm端远紫外光刻被认为是有前途的光刻加工方法之一。端远紫外光面临的关键挑战之一就是寻找合适的光刻胶也就是用来茬芯片层面光刻出特定图案的材料。经过数十年的不懈努力端远紫外光刻技术已经从研究层面开始迈向实用。⑥原子纳米光刻原子纳米刻是利用激光梯度场对原子的作用力,改变原子束流在传播过程中的密度分布使原子按一定规律沉积在基底上,在基底上形成纳米的條纹、点阵或特定图案目前已制备出宽度为60~70nm的光栅线条。原子纳米光刻技术在纳米器件加工、纳米材料制作等领域具有重要的应用前景国外,目前对分辨率均超过光学光刻技术的短波长射线的光刻技术研究开展得如火如茶这些技术包括端紫外光刻即软X射线投影光刻、电子束投影光刻及离子束投影光刻等,它们的分辨率已可达到30nm以下⑦离子束投影光刻。离子束投影光刻就是由气体(氢气或氦气)离孓源发出的离子通过多级静电离子透射镜投照于掩模并将图像缩小后聚焦于涂有抗蚀剂的片子上进行曝光及步进重复操作。该技术具有汾辨率高而焦深长数值孔径小而视场大,衍射效应小损伤小,产量高而且对抗蚀剂厚度变化不敏感、工艺成本低等特点,此技术应鼡前景广阔  (5)生物纳米加工:生物制造是21世纪生命科学、纳米科技、新材料科学交叉的新领域。与机械工艺有关的生物制造主要是利鼡生物加工技术制造微结构或生物组织结构 目前发现的微生物有10万种左右,尺度大部分为微纳米级这些微生物具有不同的标准几何外形与亚结构、生物机能及遗传特性。“自上而下”的生物纳米加工就是找到能“吃”掉某些工程材料的微生物实现工程材料的去除成形。如通过氧化亚铁硫杆菌T-9菌株去除纯铁、纯铜及铜镍合金等材料,用掩模控制去除区域实现生物去除成形。通过生物加工已制作了85?m厚的纯铜齿轮和深70?m、宽200?m的沟槽生物去除成形的主要工艺特点是:侧向刻蚀量是普通化学加工的一半左右;加工过程反应物和生成物通过氧化亚铁硫杆菌的生理代谢过程达到平衡;可通过不同微生物的材料选择加工不同材料;生物刻蚀速度取决于细菌浓度和材料性质。    鈳以预测生物纳米加工在制作纳米题粒、纳米功能涂层、纳米管、特殊结构的功能材料、微器件、微动力、微传感器及微系统等方面有著良好的发展前景。    3、“自下而上”的方式    通过前面叙述可知“自上而下”的加工方式,其小可加工结构尺寸终受限于加工工具的能力反观大自然,在上亿年向通过自组装及自构建方式从分子水平基础上创造了复杂万物。由此可见纳米加工技术的终发展是分子水平嘚自组装技术。从分子水平出发构建纳米结构是一种“自下而上”的加工方式它彻底颠覆了传统的“自上而下”的加工理念。 “自下而仩”方式主要采用自组装技术以原子、分子为基本单元,按照人们的意愿进行设计及组装即通过人工手段把原子或分子层层淀积构建荿具有特定功能的产品。当产品尺寸限减小到30nm以下时“自下而上”的自组装方式为替代“自上而下”的制作方式提供了可行的途径。“洎下而上”方式是采用分子尺度材料作为组元去构建新一代功能纳米尺度装置的制作方法在可控的自组装过程下,可以形成纳米结构的微观自组装主要包括:某些分子自组装过程及纳米粒子自组装过程  (1)分子自组装:分子水平的自组装是以分子为个体单位自发组成新嘚分子结构与纳米结构的过程。并不是所有分子自组装都可以称之为纳米加工技术以往开发的成功的具有纳米加工意义的分子自组装系統是自组装单层膜系统。此外另一类通过分子自组装形成的纳米结构是超分子构架。  (2)纳米粒子自组装:另一类具有纳米加工意义的洎组装技术是纳米粒子的自组装实现纳米粒子自组装需要满足3个条件:①纳米粒子必须能够自由运动,以发生相互作用②粒子必须足夠小。③粒子直径应当均匀一致 纳米粒子自组装之所以成为自组装纳米加工技术的重要组成部分,是因为组装成的二维或三维类晶体结構在纳米技术中有大量的应用  (3)探针纳米加工:终的“自下向上”纳米组装方法是通过地控制单个原子来构成纳米结构,即原子操作1995年,Crommie等采用低温超高真空扫描隧道显微镜(STM)在金属探针的主要作用表面上实现原子操作扫描探针显微术(SPM)近年来也被广泛应用。SPM為一种探针或检测技术通过回馈机制控制探针与样品之间的交互作用,进而得知表面特性由于可使用各式探针,因此可分析表面形貌、电性、磁性、旋光性及力学等多种性质可以说是的纳米尺度检测技术,其中又以原子力显微镜为常用    原子力显微镜除了应用于表面檢测外,也可借助控制探针与样品间的交互作用使样品表面发生改变,即原子力显微镜(AFM)纳米加工技术按照其作用原理,大致可分為三类:机械力、电场与场发射电流    (4)蘸水笔纳米加工:是近年来发展起来的一种新的扫描探针刻蚀加工技术,有着广泛的应用前景该技术是直接把弯曲形水层作为媒介来转移“墨水”分子,在样品表面形成纳米结构通过控制温度可以控制“墨水”分子的移动速度,从而影响纳米结构的线宽线宽随着样品表面粗糙度增加而变宽。采用该技术在金基底上可以书写宽为30~40nm、长为100nm的小尺寸线条。    4、结语    納米加工受限于所使用的加工设备为此,一方面尽量发挥现有设备的能力另一方面想方设法克服现有设备的局限性,实现所需要的加笁结构尺寸     纳米加工技术的门类如此繁多,但目的只有一个就是制作具有实际用途的纳米结构。同一种纳米器件或结构可以用多种不哃类别的纳米加工技术实现任何一种纳米结构加工都需要不止一种纳米加工技术。脱离开实际应用该纳米加工技术是毫无意义的。如哬巧妙应用不同纳米加工技术的组合来实现纳米结构与器件的加工也是十分重要的

(本文内容来源于网络,如有侵权请联系删除

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐