胚胎内见彩色血流信号摄像管如何拾取像素信号的

Submitted by
on 四月 9th, 2012
光电导式是一种真空管。摄像管的主体主要由电子枪和光电靶两大部分组成。在管外装有聚焦、偏转和校正线圈(或磁铁)。电子枪包括有灯丝、阴极、控制极、加速极(第一阳极)和聚焦极(第二阳极)。图2-15是光电导式摄像管的结构图。
在图2-15中,阴极被灯丝加热后发射电子。G,—栅极、G2—加速极(第一阳极)、GS聚焦极(第二阳)。G,,G:.G,与阴极组成电子透镜将电子束会聚成细束,并在聚焦线圈作用下螺旋前进,准确地聚焦在把面上。网电极设在靶前,由于靶压低于网电极上的电压,在靶前形成一个均匀的减速电场,使电子束减速,有利于电子垂直上靶。
偏转线圈套在摄像管外面,使管内形成一个偏转磁场,迫使电子束按其变化规律偏转扫描。聚焦线圈9在偏转线圈外面。
图2-16是光电靶结构图,在平板玻瑞的内侧首先涂上一层SnO:透明导电膜,然后在导电膜上蒸发一层光电导材料。光电导材料的细小颗粒相互独立,形成所谓“像素”。当光图像通过镜头聚焦在摄像管光电靶上时,对应于图像明暗细节的像素的导电性也发生相应的变化,亮部导电性加强,其变化与图像光照成正比。当位于摄像管尾部的电子枪产生的恒定电子束射向光电靶面上时,连接透明导电膜的电极将电子引出形成图像信号电流。
光电导材料上的每个像素如同一个一个“微型开关”,当电子束依次接通这些徽型开关时,它们就按照各自所受光照的强弱放出电流。这个电流的变化,体现了画面像素的明暗。电子枪产生的电子束自上而下,从左到右按一定顺序扫描光电靶。电子枪扫描的路线由位于管子外边的偏转线圈来控制,而偏转线圈又受同步信号的控制。这样就完成了光电转换的工作。
欢迎分享,如转载请注明:转载自(如有侵权内容请及时联系我们删除)
本文链接地址:
Tags: , , , , ,
或许你会感兴趣的文章
Leave a Reply 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
第一章 数字图像处理基础
下载积分:3000
内容提示:第一章 数字图像处理基础
文档格式:PPT|
浏览次数:82|
上传日期: 15:53:46|
文档星级:
全文阅读已结束,如果下载本文需要使用
 3000 积分
下载此文档
该用户还上传了这些文档
第一章 数字图像处理基础
官方公共微信&在我们的电视天线信号线里就只有两跟线,中间有一根很粗的线,外围包着一层的线,这是为了防止外界信号的干扰。在这两根线中一个是地线,一根是全电视信号线,外围的是地线。
&&&&做视频处理很难免要接触电视信号,了解全电视信号的原理。当我们把电视的信号线接到示波器上看其波形时会发现其波形很乱,但总是有一些规律可循:每隔一段特别乱的波形之后有一个很小的低电平。在这其中,中间那些特别乱的波形其实就是有效像素电平的高低信号,那些很小的电平信号就是一些同步信号。
1、关于像素时钟:大约在13.5MHz,由采样定理得出的采样信号为27MHz,像素时钟就是来同步像素有效信号的,每一个像素时钟来一个像素值;
2、关于行同步信号:顾名思义就是同步行扫描的信号,每行来一次,低电平有效(对于正电视信号而言),每来一次行同步信号就意味着本行扫描结束,新的一行就要开始了;
3、关于场同步信号:顾名思义就是同步场扫描的信号,每场来一次,低电平有效,每来一次就意味着本场扫描结束新的一场就要开始;
4、关于场、帧的概念:从屏幕上头扫到下头叫做一场,但是并不等同于一帧,一帧图像是指能够组成完整画面的图像数据,在隔行扫描中一帧包括两场:奇场和偶场;
5、关于CVBS波形电平的解析:(假设为正电视信号)设最低电平为0,最高电平为1,在两者之间有一合理的分界值x,认为x到1之间的为像素值,将这个区间划分为256份(假设精度为8位),每一个值对应一个灰度值,其中x代表黑色,1代表白色,中间为各级灰度。(一个电平就可以表示一个256之内的数字,模拟电平)x以下的电平不是有效地像素值也可以说是黑色,那些同步信号就融合在其中,包括行同步信号和场同步信号,场同步信号比行同步信号要宽很多,具体的都有自己的时间长短定义,这样才能保持发送和接收段信号的一致性,才能够恢复原来的图像;
6、关于奇偶场的概念;就是一帧分两场扫描,先扫描奇场再扫描偶场,两场组成一帧。
7、关于场消隐和行消隐:跟在场同步和行同步之后,当一行扫到屏幕的最右头或者一场扫描到屏幕的最底端时,必须返回进行下一行或者下一场的扫描,但是又不能让人眼看出来,因此就诞生的场消隐和行消隐信号,在此期间回扫器件,虽然也是在扫描但是看不出来就像隐藏的一样。
8. 视频信号电平
视频信号电平定义了视频信号不同部分的电平和范围。用于定义视频信号电平的组织是IRE(无线电工程师协会)。消隐电平对应0 IRE,白色电平对应+ 100 IRE。消隐电平是视频信号的参考级别(通常为0 V),如下面的图6所示,如果对信号进行一定的设置,消隐电平和黑色电平是不同的。
图6:视频信号电平
对于NTSC而言,通常应用7.5 IRE设置,将黑色电平提高为+ 7.5 IRE。对于PAL和SECAM,黑色电平与消隐电平一致,均为0 IRE。
下表根据视频格式显示了不同的视频信号电平。
视频格式
峰值电平
突发幅值
+7.5 IRE
+100 IRE
+120 IRE
+100 IRE
+133 IRE
+100 IRE
+130 IRE
模拟合成视频信号使用75 Ω的输出阻抗定义为电压源。当带75 Ω阻抗的负载时,白色电平同步通常为1 V峰峰值。因此,无负载信号名义上为2 V峰峰值。
也就是140IRE = 1Vp-p
9. 理解复合视频信号
复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。构成复合信号的三个主要成分如下:
亮度信号——包含视频图像的强度(亮度或暗度)信息色彩信号——包含视频图像的色彩信息同步信号——控制在电视显示屏等显示器上信号的扫描
单色复合信号是由两个成分组成的:亮度和同步。图1显示了这个信号(通常成为Y信号)。
图1:单色复合视频信号(亮度从白过渡到黑)
色彩信号通常被称为C信号,在图2中示出。
图2:彩色条的色彩信息信号(包括颜色突发)
复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。
CVBS = Y + C
图3:彩色条的彩色复合视频信号
两个组成部分Y与C可以作为两个独立信号分开传输。这两个信号合称为Y/C或S视频。
10. 视频信号组成
复合视频信号的概念
在一个信号中包含了亮度信号、色度信号与同步信号(包括场同步、行同步信号及行场消隐信号)&,称为复合视频信号。&
又称为CVBS,表示Color,Video,Blanking,Sync,或者composite video baseband signal。
复合视频信号把亮度、色度与同步信号复合在一个信号通道上传输,也就是在传输前需要把色度信号与亮度信号“合成”在一个信号里,在传输后再将色度信号与亮度信号“分离”开来,送到显示电路处理。
在色度信号与亮度信号的“合成”与“分离”过程中,因为亮度信号与色度信号之间的相互干扰以及复合视频信号本身带宽的限制等,影响了图像的质量。复合视频信号,没有象射频电视广播信号那样经过调制、音/视频混合/分离、放大、检波、解调等过程,传输的图像质量,相对射频电视广播信号要好一些,但相对其它视频信号,传输的图像质量是比较差的,水平分辨率一般可达&350-450&线。
在复合视频信号的波形中,亮度与同步信号加在一起,称为亮度信号Y(Luminance,Luma)。色调与色饱和度通过一定的转换,转换成色差信号,然后调制在色副载波上,已调色差信号即为色度信号C (Chrominance,Chroma)。色度信号的相位代表色相,即颜色,其幅度代表色饱和度。
单一水平视频行信号由水平同步信号、后沿、活动象素场以及前沿组成,其中,水平同步,后沿,前沿,组成水平消隐,如图4所示。
图4:视频信号组成
水平同步(HSYNC)信号表示每条新的视频行的开始。其后是后沿,用来作为从浮地(交流耦合)视频信号去除直流分量的参考电平。这是通过单色信号的钳制间隔实现的。对于合成彩色信号,钳制发生在水平同步脉冲中,由于大部分后沿用于色彩突发,它提供了信号色彩成分解码信息。
色彩信息可以包含在单色视频信号中。复合色彩信号包含标准单色信号(RS-170或CCIR),并加入了以下成分:
色彩突发:位于后沿,这是提供后续色彩信息相位和幅值参考的高频场。色彩信号:这是实际的色彩信息。它由两个以色彩突发频率调制到载波的象限成分组成。这些组成部分的相位和幅值决定了每个象素的色彩内容。
VBI:场消隐间隔:
视频信号的另一方面是垂直同步(VSYNC)脉冲。这实际上是在场之间发生的脉冲序列,用于通知显示器,完成垂直重跟踪,准备扫描下一场。在每个场中都有几行是不包含活动视频信息的。有些只包含HSYNC脉冲,而其他包含均衡与VSYNC脉冲序列。这些脉冲是在早期的广播电视中定义的,所以从那以后构成了标准的一部分,虽然之后的硬件技术能够避免部分附加脉冲的使用。在图5中给出了复合RS-170交叉信号,其中包括垂直同步脉冲,为了简单起见,下面给出了一个6行帧:
图5:VSYNC脉冲
应当理解对于从模拟相机得到的图片,其垂直尺寸(以象素为单位)是由帧接收器对水平视频行采样的速率所决定的。而这个速率是由垂直行速率合相机的体系结构所决定的。相机CCD阵列的结构决定了每个象素的大小。为了避免图像失真,您必须对水平方向,以一定速率进行采样,将水平的活动视频场分割为正确的象素点数。下面是RS-170标准的实例:
感兴趣参数:
行/帧数:525(其中包括用于显示的485线;其余是每两个场之间的VSYNC行)行频率:15.734 kHz行持续时间:63.556微秒活动水平持续时间:52.66微秒活动象素/行数:640
现在,我们可以进行一些计算:
象素时钟频率(每个象素达到帧接收器的频率):
640象素/行 / 52.66 e-6 秒/行 = 12.15 e6 象素/行(12.15 MHz)活动视频的象素行长度 + 定时信息(称为HCOUNT):
63.556 e-6 秒 * 12.15 e6 象素/秒 = 772 象素/行帧率:
15.734 e3 行/秒 / 525 行/帧 = 30 帧/秒
11. 不同的视频格式
以下表格描述了常用标准模拟视频格式的一些特征:
NTSC:美国国家电视标准委员会
PAL:逐行倒相
SECAM: Systeme Electronic Pour Coleur Avec Memoire
格式
应用国家和地区
帧速率,扫描速度(帧/秒)
垂直分辨率
行速率(线/秒)
图像尺寸(宽×高)象素
北美洲、中美洲、日本
NTSC Color
欧洲(除法国)、澳大利亚、非洲与南美洲部分地区
法国、东欧、俄罗斯、中东与非洲部分地区
12. 彩色编码
对于所有的PAL和NTSC格式而言,编码是基于正交调幅(QAM)概念的,其中将两个彩色成分通过象限幅度调制之后,合并在一起。调制必须经过解码,因此跟踪绝对相位需要对彩色信息进行解码。称为彩色突发的参考信号被插入到每行的开始处,它位于水平同步脉冲之后(参阅上述图3与图4)。
对于所有的SECAM格式,两个彩色成分使用两个不同的子载波频率进行频率调制,之后顺序分步在不同的视频行上。SECAM格式不需要彩色突发信号。
13. 隔行扫描概念
所有复合视频系统使用隔行扫描技术在电视屏幕上显示视频图像。图7显示了隔行扫描概念。
图7:电视屏幕上的隔行扫描
模拟视频信号包含控制扫描从左到右逐行以及从上到下逐场进行扫描。控制逐行扫描的脉冲称为水平同步脉冲(H-Sync)。控制垂直扫描的脉冲称为垂直同步脉冲(V-Sync)。
两个交叉场合成一个完整帧。第一个场称为奇数场,对视频图像的奇数行进行扫描。第二个场称为偶数场,对视频图像的偶数行进行扫描。整个过程对每帧进行重复。
7. 活动图像
扫描得到的活动视频图像总是具有4/3的尺寸比例(水平/垂直),它与视频格式无关。彩色复合视频信号表明扫描过程要求在每行的左侧和右侧需要一些附加空间,在活动视频图像场的顶部和底部也同样如此。这个额外的空间包含同步信号、彩色突发以及其他例如ITS等格式特定的信息,这并不是活动视频图像的一部分。大约所有行的90%以及每行的80%都能够传送活动图像信息。如下表所示,精确的数值依赖于视频格式。
视频格式
行持续时间
活动行持续时间
29.97 帧/秒
25.00 帧/秒
活动行代表了实际用于传送图像和信息的行数。举例而言,在NTSC中,每帧的525行中只有480行是传送图像信息的。同样,在每行中,只有在活动行序列中才传送图像信息,这比整行的持续时间短。举例而言,在NTSC中,63.55&us中只有52.2us是活动行持续时间。帧速率是扫描速度。
8. 灰度图像和提取线谱轮廓
假设以下条件满足,下一小节中的完整NTSC帧扫描图像对在电视屏幕上可能出现的视频显示进行了模拟:
电视能够显示整条线,而不仅仅是活动图像部分。电视并非将两个场进行隔行扫描得到完整的图像帧,而是对整个帧逐行扫描。
扫描从代表偶数场垂直同步模式的几行开始扫描(从上到下逐行)。在偶数场的垂直同步模式之后插入可选的测试信号(ITS)。最后显示实际的奇数场活动图像。
这个过程对偶数场重复,构成完整的帧。
说明:大多数行从水平同步脉冲开始,随后是色彩突发模式信号。之后的活动图像(或ITS)显示强度变化,其中较高的信号电平代表更高的亮度。
位于图8和图9底部的提取谱线轮廓显示了从偶数场提取的活动视频信号行。关于视频电平的更多信息,等参阅之前的视频信号小节。
水平同步脉冲一般是简单的负脉冲,这些脉冲电平低于亮度信号电平。但是,垂直同步信号由分步在多行上的脉冲序列构成,脉冲序列对于奇数场和偶数场而言是不同的。图8和图9显示了用于两种场和三种主要视频格式的垂直同步模式。
图8:用于NTSC的场消隐与同步信号
图9:用于PAL和SECAM的场消隐与同步信号
9. 完整的NTSC帧扫描
图10显示了对构成完整NTSC帧的525行进行扫描的结果。
图10:完整的NTSC帧扫描
图10是一个灰度图像,由于它代表了原始NTSC视频波形的强度图。色彩信息嵌入到这个波形中,还没有进行编码。
您可以看到左边的信号色彩突发。点状模式代表了正弦节拍的强度图,构成色彩突发波形。在解码之后,色彩突发看上去像是单色的表面(如果在电视显示器上可见)。





本文已收录于以下专栏:
相关文章推荐
模拟彩色广播电视制式NTSC、PAL和SECAM
电视制式,即电视信号的标准,可以简单地理解为用来实现电视图像、声音信号所采用的一种技术标准。电视制式有很多种。对模拟电视,有黑白电视制式、彩色电视...
复合视频信号CVBS解析
1. CVBS信号概念
做视频处理难免要接触电视信号,了解全电视信号的原理。当我们把电视的信号线接到示波器上时,会发现波形很乱,但总是有一些规律可循:每隔一段特别乱的波形...
VGA接口也叫D-Sub接口。VGA接口是一种D型接口,上面共有15针,分成三排,每排五个。VGA接口是显卡上应用最为广泛的接口类型,绝大多数的显卡都带有此种接口。影碟机拥有VGA接口就可以方...
1、就CCD和CMOS而言: 
    ADC的位置和数量是最大的不同。CCD曝光结束后,进行电信号转移,将每一行中每一个象元的电荷信号依行序依次传入每行的“缓冲器”中,由底端线路依次将每行的电信号引...
他的最新文章
讲师:韦玮
讲师:陈守元
您举报文章:
举报原因:
原文地址:
原因补充:
(最多只允许输入30个字)技术小站:
厂商活动:
地点:北京
时间:10月14日 13:00 - 17:30
地点:北京
时间:10月16日 14:00 - 17:00
地点:武汉
时间:10月19日 9:00 - 18:00
地点:深圳
时间:11月8日 13:00 - 17:30
零基础快速成为Android项目开发工程师
ARM裸机开发实战(第1期加强版)
张飞硬件设计与开发视频教程
从0到1自己动手写嵌入式操作系统
张飞电子视频全套共十部
移入鼠标可放大二维码
消隐与同步的原理
来源:本站整理
作者:佚名日 13:57
[导读] 消隐与同步的原理
消隐与同步的原理
电视系统中,扫描正程期间传送图像信号,逆程期间不传送图像信号。电子束逆程扫描在荧光屏上出现回扫线,将对正程的图像造成干扰,影响图像的清晰度。因此需使电视机在行、场扫描逆程期间电子束截止,以消除行、场逆程回扫线,即实现消隐。方法是在电视台由同步机发出消隐信号使接收机显像管在行、场逆程扫描期间关断电子束。
在电视系统中,为了使电视机重现的图像与摄像机拍摄的图像完全一致,要求接收端与发送端的电子束扫描必须同步。所谓同步是指收、发端扫描的频率(快慢)和扫描的相位(起始位置)完全相同。如果收、发端扫描不同步,则重现的图像变形或不稳定,严重时图像混乱不能正常收看。
为保证收、发端行场扫描同步,电视台同步机发出行、场同步信号,使电视接收机正确地重现图像。
四.摄像与显像
(一)摄像原理
发送端的光-电转换是由摄像管来完成的。摄像管的形式多种多样,目前黑白或彩色电视摄像机广泛采用具有内光电效应的氧化铅(pbo)管。图07-02-10 为其结构示意图,在它的圆柱形玻璃外壳内主要包含光电靶和电子枪两个部分。在管外套有偏转线圈、聚焦线圈和校正线圈。
图07-02-10& 摄像管
(1)光电靶;在摄像管前方玻璃屏内壁上镀上一层很薄且透明的金属导电膜,作为光的通路和信号输出电极,金属膜的后面是光电靶,其结构如图07-02-11(a)所示。光电靶由三层半导体材料组成。中间较厚的一层为氧化铅半导体(pbo),称为I层,里面受电子束扫描的一层为P型半导体层,在外面受光照射并与透明金属膜接触的一层为N型半导体。P层与N层都比I层薄得多,因此pbo管的光电靶实际上相当于一个光敏二极管,主要由I层(pbo)决定其工作性能。由于半导体的光敏特性,当照射在它上面的光线强弱变化时,其等效电阻也随之变化。
(2)电子枪:电子枪由罩在真空玻璃管内的灯丝、阴极、控制栅极、加速极、聚焦极等组成。当给各电极施加正常电压时,阴极发射的电子,在加速极、聚焦极、高压阳极(网电极)的作用下,加速聚焦成很细的电子束打在光电靶上。该电子束受套在管外的行、场偏转磁场的作用,沿着靶面从左至右,从上而下地运动,以拾取信号。
(3)图像信号的产生:图像信号产生电路示意图如图07-02-11(b)所示。当图像通过摄像机镜头成像于光电靶时,对应于图像像素的亮点,光电导层的电导率高,等效电阻小,电子束扫射到图07-02-10光电靶与视频图像信号产生此“亮点”时,它在回路中形成的电流大,在负载电阻上的压降较大,输出电压较小。反之,对应于图像像素的暗点,光电导层相应的等效电阻大,电子束扫射到“暗点”时,它在回路中形成的电流小,在负载电阻上的压降较小,输出电压较大。显然,摄像管输出的图像信号电压的高低与图像的亮暗成反比,称为负极性电视信号。顺便指出,若图像信号电压的高低与图像的亮暗成正比,称之为正极性电视信号。由上所述,摄像管将图像各点像素的亮暗信息转换为电压随之变化的电信号,完成了光电转换。
图07-02-11&
三 显像原理
显像管是接收端完成电-光转换的重要器件。显像管的结构示意图如图07-02-12所示。它是由电子枪和荧光屏构成的。显像管玻璃外壳的前端是荧光屏,荧光屏玻璃内壁涂有一层荧光粉,荧光粉受电子束轰击时能发光。电子枪由各个金属电极构成,各个电极加上合适电压时,电子枪的阴极受灯丝烘烤发出电子,聚合成束轰击荧光屏,电子束在外套偏转线圈产生磁场作用下扫描荧光屏。
图07-02-12&& 显像管结构示意图
当负极性图像信号加入阴极K时,能控制栅阴极电压的变化,控制电子束流Ik的强弱,从而控制电子束扫描荧光屏各点的亮度,在荧光屏还原成像。若加在阴极的图像信号电压越高,则栅阴极电压越负,即栅、阴极间负电压越大,电子束流越弱,相应荧光粉点越暗。反之,若阴极所加图像信号电压越低,电子束流越强,相应荧光粉点就越亮,正好与发送端图像相应的像素亮暗一致。电子束扫描整个荧光屏复合成完整图像。
(一)伽马(g )的概念
现实世界中几乎所有的CRT显示设备、摄影胶片和许多电子照相机的光电转换特性都是非线性的。这些非线性部件的输出与输入之间的关系(例如,电子摄像机的输出电压与场景中光强度的关系,CRT发射的光的强度与输入电压的关系)可以用一个幂函数来表示,它的一般形式是:
&& 输出=(输入)g&
式中的g (gamma)是幂函数的指数,它用来衡量非线性部件的转换特性。这种特性称为幂-律(power-law)转换特性。按照惯例,“输入”和“输出”都缩放到0~1之间。其中,0表示黑电平,1表示颜色分量的最高电平。对于特定的部件,人们可以度量它的输入与输出之间的函数关系,从而找出g 值。
实际的图像系统是由多个部件组成的,这些部件中可能会有几个非线性部件。如果所有部件都有幂函数的转换特性,那么整个系统的传递函数就是一个幂函数,它的指数g 等于所有单个部件的g 的乘积。如果图像系统的整个g =1,输出与输入就成线性关系。这就意味在重现图像中任何两个图像区域的强度之比率与原始场景的两个区域的强度之比率相同,这似乎是图像系统所追求的目标:真实地再现原始场景。但实际情况却不完全是这样。
当这种再生图像在“明亮环境”下,也就是在其他白色物体的亮度与图像中白色部分的亮度几乎相同的环境下观看时,g =1的系统的确可使图像看起来像“原始场景”一样。但是某些图像有时在“黑暗环境”下观看所获得的效果会更好,放映电影和投影幻灯片就属于这种情况。在这种情况下,g 值不是等于1而通常认为g &1.5,人的视角系统所看到的场景就好像是“原始场景”。根据这种观点,投影幻灯片的g 值就设计为1.5左右,而不是1。
还有一种环境称为中间环境的“暗淡环境”,这种环境就像房间中的其他东西能够看到,但比图像中白色部分的亮度更暗。看电视的环境和计算机房的环境就属于这种情况。在这种情况下,通常认为再现图像需要g &1.25才能看起来像“原始场景”。
(二)g校正
所有CRT显示设备都有幂-律转换特性,如果生产厂家不加说明,那么它的g 值大约等于2.5。用户对发光的磷光材料的特性可能无能为力去改变,因而也很难改变它的g 值。为使整个系统的g 值接近于使用所要求的g 值,起码就要有一个能够提供g 校正的非线性部件,用来补偿CRT的非线性特性。
在所有广播电视系统中,g 校正是在摄像机中完成的。最初的NTSC电视标准需要摄像机具有g =1/2.2=0.45的幂函数,现在采纳g =0.5的幂函数。PAL和SECAM电视标准指定摄像机需要具有g =1/2.8=0.36的幂函数,但这个数值已显得太小,因此实际的摄像机很可能会设置成g =0.45或者0.5。使用这种摄像机得到的图像就预先做了校正,在g =2.5的CRT屏幕上显示图像时,屏幕图像相对于原始场景的g 大约等于1.25。这个值适合“暗淡环境”下观看。
过去的时代是“模拟时代”,而今已进入“数字时代”,进入计算机的电视图像依然带有g =0.5的校正,这一点可不要忘记。虽然带有g 值的电视在数字时代工作得很好,尤其是在特定环境下创建的图像在相同环境下工作。可是在其他环境下工作时,往往会使显示的图像让人看起来显得太亮或者太暗,因此在可能条件下就要做g 校正。
在什么地方做g 校正是人们所关心的问题。从获取图像、存储成图像文件、读出图像文件直到在某种类型的显示屏幕上显示图像,这些个环节中至少有5个地方可有非线性转换函数存在并可引入g 值。例如:
camera_gamma:摄像机中图像传感器的g (通常g =0.4或者0.5)
encoding_gamma:编码器编码图像文件时引入g
decoding_gamma :译码器读图像文件时引入g
LUT_gamma:图像帧缓存查找表中引入g
CRT_gamma:CRT的g (通常g =2.5)
在数字图像显示系统中,由于要显示的图像不一定就是摄像机来的图像,假设这种图像的g 值等于1,如果encoding_gamma=0.5,CRT_gamma=2.5和decoding_gamma,LUT_gamma都为1.0时,整个系统的g 就近似等于1.25。
根据上面的分析,为了在不同环境下观看到“原始场景”可在适当的地方加入g 校正。
同步相关文章
同步相关下载
技术交流、积极发言! 发表评请遵守相关规定。
国际大厂IDT无线接收端芯片出货量达到了3000万颗,随着iPhone8支持无线充电功能,无线充电市场全面启动时间到来。易冲无线推出的无线充电接收端EC4016芯...
厦门新页无线充电芯片的核心优势是什么?新页为何与华强芯城强强联合?华强芯城如何助力新页的市场推进?9月22日,厦门新页董事长林桂江博士和华强...
创新实用技术专题
供应链服务
商务及广告合作
Jeffery Guo
关注我们的微信
供应链服务 PCB/IC/PCBA
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-

我要回帖

更多关于 彩色像素 壁纸 的文章

 

随机推荐