北京直播赛车——如果近地表大气压力是多少A处大气上升运动,A处气压如何变化

青藏高原地形强迫对我国气候的形成和变化具有重要的调节作用值大气所90周年所庆之际,大气所吴国雄院士研究团队回顾了近二十年来关于青藏高原感热驱动气泵(TP-SHAP)忣其影响亚洲夏季风的研究进展并从能量(θ)、位涡-加热(PV-Q)、和角动量守恒(AMC)的不同角度阐述其影响机制。

  1.青藏高原抬升加熱机理:青藏高原地表大气压力是多少加热和平原地区地表大气压力是多少加热对大气环流作用的最重要区别在于青藏高原的表面加热是抬升加热这种抬升加热有两个重大作用。其一是对水汽抬升的影响其二是对局部加热抬升的作用不同。由于大地形高耸在大气中它與大气低层的等熵面相交切,这时高原侧边界的表面感热加热就像气泵一样能够产生显著的局部加热抬升图1给出了青藏高原抬升加热影響南亚夏季风环流的数值试验结果:Wu al.(2012b)在AGCM背景试验(CON)较合理的模拟了亚洲夏季风(ASM)的基础上(图1a),设计了青藏高原顶部没有感热加热的试验(TOP-NS)所模拟的季风与CON相似(图1b)。他们进而把青藏高原的主体(指喜马拉雅山以北)去掉只保留了喜马拉雅山(HIM),模拟嘚南亚季风仍然与CON相似(图1c)如果在HIM试验的基础上把喜马拉雅山斜坡上的感热加热去除,再进行同样的积分(HIM_NS)尽管喜马拉雅山脉仍嘫存在,但结果表明南亚北部的季风降水消失(图1d)这与水球试验中斜坡没有加热导致局部的抽吸抬升作用消失的结果(Wu


  图1 GCM试验中6-8朤平均降水(填色,间隔2 mm d-1)和850hPa风(箭矢)的分布:(a)试验CON;(b)试验TOP-NS;(c)喜马拉雅试验HIM;和(d)试验HIM-NS其中喜马拉雅山的表面加热作鼡去除。左列图中粗实线表示1.5和3.0 Km的地形等高线图(d)中红粗实线表示试验HIM-NS中去除喜马拉雅山的表面加热作用的区域。右列为相关机制示意图(改自Wu

  2. 青藏高原位涡强迫和季风区水汽的水平输送: 从水分收支的角度,He et al.,(2015)发现南亚局地的地表大气压力是多少蒸发量只有降水量的1/4-1/3也就是说,陆地季风降水的水汽来源绝大多数依靠外来的水汽输送于是,输送水汽的风是如何形成的就成为季风动力学的一个根夲问题利用AGCM模拟和试验,He et al.(2015)发现有、无TIP地表大气压力是多少感热的试验差异可以在地表大气压力是多少产生8K的位温差异及环绕TIP的庞夶的近地表大气压力是多少气旋式环流(图2a)。他们利用干模式(即在AGCM中设水汽q恒为零)重复试验结果如图2b所示,TIP加热仍能产生地表大氣压力是多少8K位温差异及绕TIP的气旋式环流但环流强度略有减弱。这意味着TIP的表面升温及绕TIP的气旋式环流基本上是由TIP的表面感热加热气泵(TIP-SHAP)所驱动的,降水的潜热释放起着正反馈的作用正是这个气旋式环流像巨型气泵一样把海洋上充沛的水汽从阿拉伯海和孟加拉湾输送到亚洲大陆,亚洲的季风降水才得以维持


  图2 在GCM试验中夏季平均的近地表大气压力是多少(σ=0.991)的位温(填色,K)和环流(箭矢m s-1)差异分布:(a)(CON-TIP_NS);(b)同(a),但为干大气模式试验(CON_dry-TIP_NS_dry)方框示南亚季风区北部(24-28oN,75-100oE)区域(引自He et al. 2015)

  3. 角动量守恒经圈环流嘚激发和季风区大范围上升运动:大气的经圈环流对于轴对称加热的响应一般存在两种流型, 即热力平衡(TE)型和角动量守恒(AMC)型(Schneider和Lindzen, 1977; Schneider, ; Held和Hou, 1980)。中高緯度大气惯性稳定度强, 一般取TE型环流;热带和副热带绝对涡度很小, 一般取AMC型, 季风经圈环流就容易发展吴国雄等(2016)和刘屹岷等(2017)发现TIP主体加热在对流层顶附近能够产生上冷下暖的强大的反气旋。他们研究其形成原因发现是由于大地形感热加热导致其上空大气热力层结发生變化所致(图3)。大地形的加热使对流层变暖和对流层顶抬升的同时也使平流层变冷,形成副热带高层的绝对涡度极小值根据Plumb和Hou(1992)给出嘚动力判据表明,当副热带高层的绝对涡度出现小值甚至为负时大气对纬向对称加热将呈现角动量守恒(AMC)式的经圈环流型。因此正昰由于夏季青藏-伊朗高原感热气泵(TIP-SHAP)的影响,改变了其上空的温度和环流结构有利于副热带季风型经圈环流的发展,从而给亚洲副热帶季风提供了大范围上升运动的背景条件


  图3青藏高原主体加热通过改变对流层上层的温度场和流场结构在近对流层顶形成最小位涡強迫的示意图。Pc表示临界气压层;箭矢表示反气旋环流; “C”和蓝色表示冷性 “W”和粉红色表示暖性。详细请见正文(引自吴国雄等2016)

  4. 本文还回顾了青藏高原对南亚季风形成影响的近期讨论:Boos and Kuang (2010)在自然杂志发表文章,认为对南亚季风的形成而言青藏高原的热力作用并不偅要,重要的是高耸的喜马拉雅山对来自北方干冷空气的隔离作用使得印度低空高能量(用高 表示)地区得以与高空的南亚暖中心通过對流发展耦合起来,从而维持印度季风然而 Wu et al. (2012), He et al. (2015) 的研究发现由于青藏高原位于非洲-亚欧大陆的东部,又由于夏季大陆的加热产生近地层的大陸尺度气旋式环流使得夏季欧亚大陆70oE以东的热带、副热带地区基本受偏南风气流控制。因此夏季并不存在北风对南亚地区入侵的威胁此外,夏季对流层暖中心(UTTM)是与高层的南亚高压中心重合而与地表大气压力是多少高熵区以及500 hPa上升运动并不存在一一对应关系,尤其昰在UTTM中心及其西部的下方地表大气压力是多少高熵区上空反而受下沉运动控制。利用热成风关系和Sverdrup平衡关系Wu et al.(2015b)发现(图4),副热带对流加热所强迫的温度场落后加热场1/4位相由于热成风的约束,暖中心出现在东亚季风加热区西部而冷中心出现在东亚季风加热区的东部。與此同时在惯性力作用下(黄箭头),经向风垂直切变还造成的UTTM上空的纬向风辐合及低空的辐散因此暖中心(南亚高压中心)处对应著下沉运动,而不是上升运动这就是说,南亚暖中心的形成是一个大尺度动力学问题而非由局地对流加热所致。至于印度低空的高能區它主要是由于高水汽含量所致。正是由于TIP-SHAP所驱动的近地表大气压力是多少气旋环流把水汽从阿拉伯海输送到印度次大陆才形成了夏季茚度低空的高能区


  图4 上对流层温度最大中心的经度位置与加热垂直梯度分布的T- 关系示意图。向上蓝箭头示对流加热上升向下红箭頭示辐射冷却下沉,黑箭头为加热驱动的纬向风V黄色箭头示与气压梯度力平衡的惯性力fv,蓝色线示200 hPa南亚高压分布粉红线示300 hPa等温线,粉紅虚线为300 hPa上u=0的等值线详见正文(引自Wu et al. 2015b)。

  最后值得强调的是本文的回顾是假定TIP上存在地表大气压力是多少感热加热。这里我们面臨的挑战是这种感热是如何形成和变化的既然地表大气压力是多少感热是地表大气压力是多少风速和地-气温差的函数,而它们都与大气環流及温度密切相关因此TIP-SHAP不仅是大气环流的驱动因子,它也是大气环流变化所形成的两者互为因果,这就使得研究的难度变大了我們面临的又一挑战是TIP-SHAP和气候系统的其它成员(如陆地、海洋、冰雪圈和生物圈等)是如何共同影响亚洲季风的各种尺度变化的。近年来關于海-气相互作用各种时间尺度变化的讯号对季风的影响已有大量研究。但如何把多圈层相互作用作为一个整体去影响亚洲季风的变化仍嘫是一个重大的挑战随着观测资料的不断丰富及数值模拟水平的不断提高,可以期盼在不久的将来有关青藏高原和海洋共同影响亚洲季風的研究能取得新的突破


全球气候变暖和快速的城市化进程使得城市人居环境产生了显著变化在“热岛效 应”等多种因素共同作用下,夏季城市地区遭受高温灾害的可能性逐渐增大常规的气 溫指标在夏季

全球气候变暖和快速的城市化进程使得城市人居环境产生了显著变化,在“热岛效 应”等多种因素共同作用下夏季城市地區遭受高温灾害的可能性逐渐增大。常规的气 温指标在夏季湿热的天气状况下并不能完全体现人体所承受的热环境压力体感温度指 数综匼考虑了温度湿度等气象要素对人体的影响,可有效表征人体舒适度本文以北京 市为研究区,探索利用多源遥感数据反演体感温度首先通过站点资料对比北京市主要 气象要素和体感温度的时序变化特征。其次基于多源遥感数据分别利用计算公式和随 机森林模型计算湿熱指数(HMI)和净有效温度(NET)两种体感温度指数,比较结果 精度最后分析北京市夏季体感温度的空间分布特征,对比了地表大气压力是哆少温度、气温和体感温 度的空间分布差异依据HMI指数对北京市的夏季人体舒适度进行分级评价。研究结 果表明:
(1) 北京市近四十年来氣候变化呈现出增温、减湿和风速下降的趋势表现出明显 的城市热岛特征;体感温度整体呈缓慢上升趋势,HMI指数的增温率为0.14°C/10a, NET 指数增温率为0.26°C/10ao分析表明北京变暖变干的趋势与城市化进程有着密不可分的 关系夏季北京整体的气象条件不利于城区的散热降温。
(2) 基于遥感方式反演湿热指数(HMI)和净有效温度(NET)来表征体感温度 利用公式直接计算和随机森林模型分别计算HMI,其中公式计算结果的拟合优度为0.79, 平均绝对误差1.12°C,均方根误差1.56°CO随机森林模型结果的拟合优度为0.85,平均 绝对误差0.98°C均方根误差1.37°CO算法对比的结果表明随机森林模型在进行气溫、 体感温度等温度场的反演时有着比公式直接计算更好的精度,利用随机森林模型反演 NET指数也取得了较好的结果拟合优度为0.73,平均绝对誤差0.83°C,均方根误差 l.orCo
(3) 北京市夏季体感温度存在着明显的空间差异性呈现出东南高于西北、城区高 于郊区的环状递减趋势。HMI指数和NET指數的空间分布特征相似但两种指标的温 度范围不同,全北京市HMI指数均值35.18°C, NET指数均值24.9°C o区域功能定位的 不同使得体感温度在城市内部也有奣显差异最高的西城区和最低的延庆区HMI指数 相差9°CO北京当天共有8个辖区的HMI指数超过了 35°C,达到了高温天气水平,比 同区域同时刻的气温高5°C以上
(4)基于HMI指数对北京市的人体舒适度进行分级评价,当天有7.5%的区域人体 感觉舒适81.3%的区域人体略感不适,11.2%的地区热环境让人觉得佷不舒适没有地 区的体感温度达到危险或者极度危险的水平,但仍需对湿热天气带来的影响加以防范
随着社会的发展,人们在追求高質量的生活的同时也愈发关心周围环境对自 身的影响全球气候变化是人类所面临的主要环境问题之一,IPCC在第五次评 估报告第一工作组报告决策者摘要中明确指出气候系统变暖是毋庸置疑的,包 括夏季高温灾害在内的极端天气和气候事件发生的几率将有所增加⑴夏季高溫 灾害一旦发生在人口稠密的城市地区,容易造成严重的社会影响1995年美国 芝加哥和2003年法国巴黎的高温热浪灾害都导致了大量的超额死亡〔"I。随着社 会的进步快速的城市化进程使得城市的规模和人口数量迅速增大,下垫面和地 表冠层结构发生了巨大改变人为热排放快速增加,由此导致的城市热岛效应变 得日益显著并表现出强度逐年增强的趋势⑸热岛效应对区域小气候、城市热环 境、水文条件、土壤的悝化性质等方面产生影响,从而改变局地的能量平衡、水 循环过程和大气边界层结构⑹对城市生态环境带来深远影响。此外城市热岛 效应还会增加高温灾害发生的几率,过高的气温会加剧城市空气污染的程度⑺, 导致雾霾、烟尘和有害气体在城市上空的过量累积增加人類心脑血管、呼吸道 和消化道等疾病的发病率,进一步威胁城市居民健康[踊]
在气候变暖和城市热岛效应等多种因素的共同作用下,夏季城市地区遭受高 温灾害的风险不断上升a】评价人体所承受的热环境压力不仅直接关系到城市 中各类人群的日常生产、生活和健康,還影响到公共空间规划、社会生产、城市 运转等各个方面具有普遍的社会意义。常规的气象服务以气温为主要指标进行 评价但夏季高溫往往伴随着高湿度,单凭气温这一指标很难完全体现人体所 承受的热环境压力,容易使人的主观概念与实际感受产生偏差体感温度莋为评 价人体舒适度的一种指标,能很好的反映气温、湿度等气象要素对人体的作用 可有效评价人体在不同环境气象条件下的舒适感,被证明与城市热健康、室内温 度"I】和高温致死率M2-⑶的关系最为密切因此基于体感温度来衡量城市热环境对 人体的影响更为合理。
多数的體感温度研究受气象台站的监测范围和布设数量的限制更偏重于点 尺度上的定性分析,难以对大尺度区域的体感温度进行定量计算高溫灾害风险 的分布具有空间差异性[⑷,如何较为细致的监测城市内部的体感温度空间分布 已经成为一个值得研究的方向遥感数据可以提供不同空间尺度上较为详细的地 表和大气状况,运用遥感手段来反演体感温度能提供比站点气象资料更好的空间 异质度信息[⑸反映體感温度的空间细节变化,衡量不同区域所承载的热环境压 力基于上述考量,本文结合北京市的多源遥感数据和气象观测数据计算湿熱 指数(HMI)和净有效温度(NET),采用公式直接计算和随机森林模型分别得到 北京市的体感温度指数,分析了体感温度的空间变化特征对比了体感温喥与其 他温度场的分布差异,并依据体感温度对北京市的夏季人体舒适度进行分级评价 1.2.1体感温度指数的研究进展
体感温度作为衡量人体舒适度的一项指标,随着人体舒适度研究的不断发展 而完善国外关于舒适度的研究主要经历了仪器直接观测、经验模型评价和机理 模型萣量研究这三个阶段[⑹:。
早期的舒适度研究通常基于仪器观测的结果来评价1916年Hill等[⑺利用 卡他温度计被加热到36.5°C时液球在单位时间內单位面积上的散热强度来模拟 人体的散热,提出了卡他度的概念以此表征温、湿、风的综合散热效果,被应 用于矿井、办公室等场所嘚舒适度衡量
第二阶段是应用经验模型进行人体舒适度的定量评价。经验模型是以人体舒 适度试验结果为依据利用经验和统计方法构建的舒适度模型。1923年 Houghton等人口8】基于两名裸体男子的主观热感觉实验结果,确定了包含气温和 相对湿度两个气象要素的等舒适线并提出叻适用于室内热环境评价的有效温度 指数(Effective TemperatuTe Index, ET),计算公式如下:
式中ET为有效温度指数(°C), t为气温(°C), RH为相对湿度(%)。
量平衡模型在人体生物气象学应鼡的先河但热舒适方程描述的是理想状态,现 实应用中还存在着一定的局限性标准有效温度(Standard Effective Tempreture, SET)是由Gagge等人在人体温度调节两节点模型基础仩提出的师】,该模型将人 体看作核心层和皮肤层两部分通过物理分析得到人体传热过程,与之前基于实 验志愿者主观评价的有效温度囿本质区别生理等效温度(Physiological Equivalent Temperature, PET)是对人体热量平衡模型的进一步改进,综合考虑 了主要的气象要素、衣着条件以及个体活动对舒适度的影响31隨着多学科的高 度交叉与融合,世界气象组织(WMO)提出了一个融合生理学、医学、气象学 及计算机科学等众多领域的通用热气候指数(Universal Thermal Climate Index, UTCI),该指数模擬了人体的热调节功能和体内传热过程综合考虑了多种影响 因素,拟真度高有着广泛的应用前景卩現
国内关于舒适度和体感温度的研究相对较晚,上世纪80年代中期有一些关 于舒适度的定性描述90年代开始转为定量的研究,并取得了较快的发展和应 用陆鼎煌等基于多年朤平均气温、风速和相对湿度数据,利用环境卫生学方法 提出了综合舒适度指标[辺吕伟林[河通过实验得出了北京市体感温度的统计模 型,让公众对预报的气温和实际感受到的体感温度之间有了一个可借鉴的标准 李万珍等时根据“实感气温”法通过实验绘制了人体舒適度的风温(VT)和风湿 (VF)曲线,并结合加拿大天气局提岀的舒适度指数进行了全年的舒适度评价谈 建国等将人体热量平衡模型与数值预报产品楿结合,计算体感温度来评价人体舒 适度[殉柏秦凤等利用五十余年的观测资料计算了国内20座主要城市逐日的人 体舒适度指数并对其进荇特征分析,对人们旅游出行具有指导意义厲】马丽君等 从温湿指数、风寒指数、着衣指数三方面入手,对东部5个典型城市进行了 50 年的旅游气候舒适度变化分析卩8】各地的气象部门也依据当地的气候条件和不
同的舒适度指标,陆续发布了当地的人体舒适度指数预报[刑
1.2.2体感温度遥感反演进展
遥感手段由于具有大范围连续成像,可反映空间细节信息的独特优势已经 逐渐被用于人体舒适度的研究。Ho等利鼡多源遥感数据反演夏季温哥华地区的 体感温度揭示了体感温度在城市不同区域的空间分布规律[40]。谢雯等提出了适 用于MODIS数据的旅游溫湿指数模型计算并分析了我国2003年12个月的旅 游温湿指数空间分布特征⑷】。李仕峰等基于遥感影像计算的地表大气压力是多少温度和水汽指 数代替传统人体舒适度计算公式中的气温和相对湿度获取了珠江三角洲核心区 域的大尺度人体舒适度空间分布Id。总体来说基于遥感的体感温度反演研究还 较少,但就其主要影响因子(温度和湿度)的遥感反演来看已经取得了比较丰 富的研究成果。
1.2.2.1近地表大气压力昰多少气温遥感反演进展
气温是影响体感温度的最主要气象要素是起到决定性作用的指标⑷]。目前 遥感反演近地表大气压力是多少气溫主要是从地表大气压力是多少温度与气温之间关系入手总体上可分成五类: 经验统计方法、温度一植被指数法、能量平衡方法、机器学習方法和大气廓线外 推法。
经验统计方法是目前较为常用的一种估算气温的方法主要分为简单统计 方法和多元回归统计方法。简单统计方法模型构建简单利用地表大气压力是多少温度或亮度温 度与站点观测气温之间的线性关系来估算气温屮-45],但忽略了其他因子的影响, 存在一定的局限性多元回归统计方法是对多种近地表大气压力是多少气温影响因子进行回归分 析的方法,相较于简单统计方法来说有着哽高的计算精度a】但无论是简单统计 方法还是多元回归方法,其模型的普适性都较差针对不同时间和不同研究区需 要重新建模。
(2)溫度-植被指数法
温度-植被指数法是通过地表大气压力是多少温度和植被指数之间的负相关性来估算气温 的半经验模型反演方法其研究前提是假定浓密的植被冠层表面温度等于植被冠 层内的气温,关键在于根据遥感影像的空间分辨率差异来调整空间邻域窗口的大 小Nieto基于MSG卫煋数据利用TVX方法计算得到西班牙2005年间的日近 地表大气压力是多少气温,精度在3?5°C〔47]徐永明等改进了温度一植被指数方法,提高了该方 法的精度与适用范围[徊温度-植被指数法只需要地表大气压力是多少温度和植被指数即可估算 近地表大气压力是多少气温,但缺点是鈈同植被覆盖地区植被指数饱和值的确定存在着主观判断 差异
能量平衡方法是在能量平衡方程的基础上,利用显热通量和潜热通量的差 徝来表达气温差异同时忽略水平方向上的能量交换和光合作用的影响来建立地 表温度与气温之间关系的反演方法跑。多数学者基于能量岼衡方程建立近地表大气压力是多少 气温与环境参数的关系模型进行反演冈能量平衡方法的优点在于物理意义明 显,模型的普适性和移植性较好但缺陷在于部分物理参数无法通过遥感方式获 取。
机器学习已经广泛应用于社会的各个领域与遥感的结合可以追溯到上世 纪90姩代,它最初作为一种自动化知识基础建设的远程感知方法被引入神经 网络方法是其中较为典型的一种应用,许多学者将多种地理因子莋为人工神经网 络的输入参数进行气温的遥感反演[51'52],该方法的优点在于可以方便的表达气温 与多地理要素之间复杂的非线性关系随机森林方法作为一种可进行分类与回归 分析的新型机器学习技术,在模型构建过程中采用了自举法(boot-strap)进行重 采样具有运算效率高、抗干扰能仂强、避免过度拟合等优点。早期的随机森林 方法在遥感领域主要是用于遥感图像的分类[呵但由于随机森林算法在分析变 量关系上相較于人工神经网络或者支持向量机等其他暗箱方法具有更好的优势 [54],因此随机森林回归算法在遥感上的应用也越来越多。白琳等基于随機森林模 型结合多要素反演了近地表大气压力是多少气温[旳;任梅芳等在进行气温降尺度研究时对比了 多元线性回归MLR、人工神经网络ANN、支持向量机SVM与随机森林RF四 种方法,发现随机森林模型的模拟效果要明显优于其他几种方法的模拟结果〔旳
由于大气温度在对流层内随著海拔的增加而垂直递减,因此依据该特性可 以建立大气廓线温度与近地表大气压力是多少气温之间的关系MOD07_L2/MYD07_L2是由 Terra和Aqua提供的晴天条件下5 km分辨率的大气廓线产品旳,Mende戶]利 用该产品及地表大气压力是多少气压和实测绝热温度梯度来估算近地面2m高度的气温0Flores[59] 等在Mendez方法的基础上考虑叻气压随海拔高度变化的影响结合MOD07大 气温度垂直廓线和SRTMDEM数据估算了智利奥比奥地区卫星过境时的近地表大气压力是多少 气温。
1.2.2.2近地表大氣压力是多少湿度遥感反演进展
空气湿度是体感温度的重要影响因子当气温处于较为舒适(15.5?26.5°C) 的范围时,空气湿度对人体感觉的影响不夶当气温较高或偏低时,空气湿度的 变化对人体热感的影响就较为明显相较于近地表大气压力是多少气温的遥感反演,大气水汽遥 感嘚研究相对较少主要是基于大气柱水汽廓线或大气可降水总量,结合地面监 测数据建立统计回归方程所进行的反演20世纪中叶,一些学鍺通过研究发现 近地表大气压力是多少露点温度和高空大气水汽之间具有强相关性并由此建立了二者之间的线 性关系20-61]。由于大气湿度廓線垂向分辨率不高限制了其在近地表大气压力是多少湿度反演中 的应用0],因此大气可降水量更适合于近地表大气压力是多少湿度的遥感估算。Peng等建立大 气可降水量与空气比湿之间的经验模型利用MOD05产品估算了近地表大气压力是多少相对湿 ?[63]; Han等以地表大气压力是多少温度、NDVI、TPW、DEM、儒略日和当地时间为自变量, 建立回归模型估算加拿大东部地区近地表大气压力是多少的相对湿度国],结果精度约为10%o张 丹等将MOD05产品与常規气象观测数据相结合建立了中国地区逐月地面水汽 压模拟统计模型[旳。虽然遥感是估算近地表大气压力是多少湿度的有效方法之一泹反演过程中 的经验模型参数有着很强的区域性,导致模型的可移植性和普适性较差结合陆 面过程理论和空气动力学理论,研究基于物悝模型的近地表大气压力是多少湿度估算算法充分 利用高精度的大气温湿廓线数据,将有助于提高现有近地表大气压力是多少湿度遥感反演的精度o 1.3研究目标与研究内容
基于多源遥感数据计算湿热指数(HMI)和净有效温度(NET)指数来表征 北京市夏季的体感温度分析体感温度的空间分咘规律,并与地表大气压力是多少温度和近地表大气压力是多少 气温进行对比基于体感温度对北京市的夏季人体舒适度进行分级评价。
(1)根据北京市多年的气象站观测数据对比体感温度与气温的时空变化
趋势,进行北京市夏季热环境的分析

(2)利用 2017 年 7 月 10 日的 Landsat8 OLI/TIRS 数据、ASTER-GDEM 数 据和MODIS水汽产品提取影响体感温度的环境参数。利用公式直接计算和随机 森林算法分别得到湿热指数(HMI)和净有效温度(NET),进行变量重要性分析 和算法对比并选择合适的指数来表征北京市的体感温度。


(3)基于遥感反演的体感温度探究北京市体感温度的空间分布规律,对 比体感温度与地表大氣压力是多少温度和近地表大气压力是多少气温的分布差异依据体感温度对北京市的夏季 人体舒适度进行分级评价。
第二章研究数据和預处理
北京市位于华北平原与燕山山脉、太行山脉的交接处地理范围为 115。25‘?117°30'E, 3928‘?41°36N,总面积达o地形呈西北高东南 低,西部和北部为屾区面积约为10200km2,占总面积的61%,平均海拔1000? 1500m;东南部为平原区,面积约为6600km2,占总面积的39%,平均海拔20? 60m北京是典型的温带半湿润大陆性季风气候,夏季高温多雨,冬季寒冷干燥 春秋短而冬夏长。年平均气温11?13°C,年极端最高温35?42°C,年降水量在 470?600mm之间
北京是我国的政治和文化中心,自20卋纪70年代以来经历了快速的城市化 进程50年间北京市基建投资建设增加近390倍,城市人口增加6.5倍[旳截止 到2016年底,北京市的常住人口总数達到2172.9万人城镇化率达到86.5%, 是一个人口密度超过1300人/平方千米的超大型城市o2017年北京市地区生产总 值及人均地区生产总值分别达到28014.9亿元和128997元/人⑹】。随着城市规模 的扩大北京市单核心圈层式的发展模式极易影响其城市热环境,城市热岛强度 表现出逐年增强的趋势囱],这势必增加丠京城区遭受夏季高温灾害的可能性较 高的夏季高温发生概率、庞大的人口总量和高度的城镇化水平,使得北京的城市 高温灾害造成的影响越来越突出因此本文选取北京市作为研究区,利用遥感手 段对城市空间的体感温度分布进行研究
第三章基于站点资料的北京夏季熱环境分析
气象环境、个体差异和暴露条件等因素都会对体感温度产生一定的影响,但 就宏观角度而言人类生活在自然环境中,气象要素才是影响体感温度的主要因 子气象要素及其变化对体感温度有着显著影响。本章根据获取的北京市多年气 象站点观测数据对北京城市熱环境进行分析描述时间尺度上气温和体感温度的 异同,对比站点数据与遥感反演结果的差异体现基于遥感方式估算体感温度的 必要性。
第四章 体感温度的遥感反演
本章主要介绍体感温度的遥感反演过程首先进行环境参数的计算,在选择 环境参数时主要基于两个原则一是选取的环境参数应能直接或间接的影响地气 能量平衡;二是参与反演的环境参数必须是遥感方法可获得的。基于以上两个原 则本攵所选的参数包括地表大气压力是多少温度、不透水面盖度、归一化植被指数、归一化水 体指数、地表大气压力是多少反照率、高程、大氣可降水量、空气动力学粗糙度长度和坡度坡向。 在此基础上引入湿热指数(HMI)和净有效温度(NET)两种体感温度指数分 别利用计算公式囷随机森林模型进行计算,对比两种算法的结果精度实现体感 温度的遥感反演。
第五章基于遥感反演的北京市体感温度空间分布
基于2017年7朤10日的遥感数据和气象数据计算HMI指数和NET指数 来反映北京市夏季体感温度的空间分布特征,利用剖面特征分析来描述体感温度 在城市内部嘚变化趋势从空间分布特征和温度范围两方面对比地表大气压力是多少温度、近地 表气温、HMI指数和NET指数,最后以HMI指数为依据对北京市夏季热舒适度 进行分级评价
本文基于2017年7月10日的Landsat8 OLI/TIRS数据和1980?2017年的气 象站点数据,以北京市为研究区探索利用遥感手段计算城市地区的体感温喥指 数。首先通过多年观测资料分析了北京市长时间序列的气温、湿度、风速和体 感温度的变化趋势;其次,基于遥感数据分别获取地表大气压力是多少温度、大气可降水量、不 透水面盖度、归一化植被指数、改进型归一化水体指数、地表大气压力是多少反照率、空气动仂 学粗糙度长度、地表大气压力是多少坡度和高程这几类环境参数进而反演出研究区的近地表大气压力是多少气 温和露点温度。在此基礎上引入湿热指数(HMI),采用公式法和随机森林模 型两种方式分别计算并进行算法对比,选择反演效果更好的随机森林模型来计算 考虑风速影響的净有效温度(NET),并利用站点实测数据进行了验证;最后 分析了北京市夏季体感温度的空间分布特征,对比了体感温度与地表大气压力是哆少温度和近地 表气温的分布差异并依据体感温度对北京市的夏季人体舒适度进行分级评价。 主要结论如下:
(1)通过多年的气象观测资料對北京城市热环境进行分析发现北京市近 四十年来的气候环境呈现出增温趋势、减湿、风速降低的趋势。气温增温率为0.33°C /10a,城区和郊区的氣温差异扩大表现出城市热岛效应的特征,热岛强度约为 l°c;湿度呈现远郊大于近郊大于城区的分布趋势递减率约为0.5%/10a;风速 表现为波動下降的趋势,近十年来北京的平均风速保持在2m/s;体感温度整体呈 缓慢上升趋势,HMI指数的增温率为0.14°C/10a, NET指数增温率为0.26°C/10ao 多年气象数据表明北京變暖变干的趋势与城市化进程有着密不可分的关系夏季 整体的气象环境不利于北京城区的散热降温。
(2)基于遥感方式反演影响体感温度的環境参数利用计算公式和随机森 林模型分别计算HMI指数,结果表明公式直接计算的结果平均绝对误差MAE为 1.12°C均方根误差RMSE为1.56弋,拟合优度炉為0.79;随机森林模型的平均 绝对误差MAE为0.98°C均方根误差RMSE为1.37弋,拟合优度疋为0.85,对 影响HMI指数的各环境要素进行变量重要性分析高程、地表大气壓力是多少温度和大气可降 水量是最主要的影响要素,其余要素起到间接影响的作用算法对比结果表明随 机森林模型的精度更高,注重反映环境要素之间的相互作用而不是简单的进行数 值运算所得结果更符合实际分布情况,在进行气温、体感温度等类似的温度场 反演时囿着更好的表现利用随机森林模型计算包含风速影响的NET指数,反 演结果的平均绝对误差MAE为0.83°C均方根误差RMSE为1.0FC,拟合优度 2为0.73,估算结果较好。
(3)根据HMI指数和NET指数的瞬时遥感反演结果对北京市体感温度的 空间分布特征进行分析两个指数空间分布规律具有高度一致性,都反映出北京 夏季体感温度存在着明显的空间差异性东南部平原地区体感温度明显高于西部 和北部的山区,中心城区的体感温度高于郊区并表现出環状递减的趋势,但NET 指数因为考虑了风速的降温作用因此整体数值范围小于HMI指数。在城市内 部由于功能区分布差异使得体感温度在相鄰区域上也有明显差异。HMI指数最 高的是西城区平均为39.8FC,最低的是延庆区,平均为30.75°Co当天北京共 有8个辖区的体感温度超过了 35°C,达到了高温天氣水平而北京同时刻的气 温均值只有29.99°C,在人口稠密的地区,例如中心城区、延怀盆地、密云河谷 等地HMI指数一般比气温高5°C以上,这一差异的分布规律与湿度的空间分布 (4)基于HMI指数对北京市7月10日的人体舒适度进行分级评价北京 市当天有7.5%的区域人体感觉舒适,81.3%的区域人体感觉畧微不适,还有11.2% 的地区热环境让人觉得很不舒适对应的区域分别是高海拔山地、郊区和低海拔 山地以及中心城区。北京当天没有地区的體感温度达到危险或者极度危险的水平, 但城区等人口稠密的地区仍需警惕闷热潮湿天气带来的潜在危害

安平县改社网络科技有限公司版權所有 备案号:冀ICP备号

我要回帖

更多关于 地表大气压力是多少 的文章

 

随机推荐