年迈的DIY卡牌制造者,哪一款DIYfgo卡牌生成器网页版比较

查看: 103542|回复: 484
适合业余爱好者DIY的高精度数字电桥
本帖最后由 xjw01 于
07:59 编辑
基本状况:
工作频率: 100Hz,1kHz,7.813kHz
最小分辨:最小分辨0.5毫欧,0.03uH,0.02pF
最大分辨:G欧
基本量程精度:1kHz基本量程精度,0.5%,选好电阻,精心制作,可以轻松达到0.25%精度
AD非线性误差小于0.05%,AD零点误差采用直流偏置消除
信号源:软件合成正弦DDS、软件合成方波DDS
显示:4LED
单片机:STC12C5A60S2
myLCR.PNG (57.68 KB, 下载次数: 302)
07:44 上传
<p id="rate_52" onmouseover="showTip(this)" tip="xjw是不是在《无线电》上发表过文章&经验 + 3 点
" class="mtn mbn">
<p id="rate_94" onmouseover="showTip(this)" tip="&经验 + 15 点
" class="mtn mbn">
本帖最后由 xjw01 于
15:07 编辑
本表对小电容的高Q测定不大理想,不过,电容的容量测定是准确的。Q值受干扰,与PCB布局、表笔等影响有关,马马虎虎能用,与商品表有一些差距。
.jpg (103.48 KB, 下载次数: 4)
14:44 上传
.jpg (115.48 KB, 下载次数: 2)
14:44 上传
.jpg (123.91 KB, 下载次数: 2)
14:44 上传
.jpg (103.57 KB, 下载次数: 2)
14:44 上传
.jpg (82.64 KB, 下载次数: 2)
14:44 上传
.jpg (106.77 KB, 下载次数: 2)
14:44 上传
本帖最后由 xjw01 于
12:55 编辑
(5.68 KB, 下载次数: 2365)
12:46 上传
点击文件名下载附件
相敏检波等效.GIF (12.93 KB, 下载次数: 280)
12:48 上传
预览图.GIF (150.41 KB, 下载次数: 99)
12:48 上传
PCB正面.jpg (198.44 KB, 下载次数: 94)
12:51 上传
PCB反面.jpg (92.54 KB, 下载次数: 67)
12:51 上传
洞洞实验板
T1.jpg (109.51 KB, 下载次数: 77)
12:53 上传
T2.jpg (212.11 KB, 下载次数: 61)
12:53 上传
T3.jpg (81.9 KB, 下载次数: 51)
12:53 上传
T4.jpg (81.65 KB, 下载次数: 40)
12:53 上传
电阻测试0.jpg (54.07 KB, 下载次数: 41)
12:54 上传
电阻测试1.jpg (73.47 KB, 下载次数: 52)
12:54 上传
电阻测试2.jpg (74.88 KB, 下载次数: 39)
12:54 上传
电阻测试3.jpg (87.57 KB, 下载次数: 68)
12:54 上传
电阻测试4.jpg (64.84 KB, 下载次数: 44)
12:54 上传
(140 KB, 下载次数: 58)
12:54 上传
本帖最后由 xjw01 于
18:40 编辑
DIY数字电桥说明
一、概述:
玩矿石收音机,大部分元件需要DIY,所以需要知道元件的参数。因为DIY的元件没有标称技术参数。比如,需要知道谐振器件、检波器件、天线、耳机、变压器等器件的电抗特性。其中,高频参数可以使用Q表解决问题,而低频参数Q表难以测定。想了几天,还是觉得DIY一个LCR表来测定比较有效果,以图解决音频阻抗测定问题。
&#8226;LCR电桥原理
测定电抗元件Zx中电压U1与电流I,就可以得到Zx=U1/I。当Zx串联了已知电阻R,那么测定了R上压降U2,就可得到I,最后Zx = U1/I = U1/(U2/R) = R*U1/U2,可见,无需测量I的具体值就可以得到Zx,这是电桥的一般特征。
为了得到Zx在x轴与y轴上的两个分量,以上计算须采用复数计算。
设U1 = a+jb,U2=c+jd,那么Zx = R*(a+jb)/(c+jd) = [ac+bd + j(bc-ad)]/(c*c+d*d)
U1与U2要采用同一个坐标系来测量。
借助相敏检波器,可以分离出a、b、c、d,相敏检波过程,需要一个稳定的0度与90度的正交坐标轴,测量期间,U1、U2向量也必须在这个坐标系中保持稳定,不能乱转。
为了得到足够的精度,控制好放大器的增益,使得a、b、c、d的有效数字足够大,Zx的测量精度就高。然而,Zx分母两个正交量ac+bd和bc-ad,其中一个值可能很小,这就要求AD转换器的精度及分辨力要足够大。
&#8226;一点思路
设计此表,前后花费了近一个月的业余时间,更改了多个版本,总体比较满意。
本表主参数精度良好,副参数精度差。这是表头灵敏度不够造成的。因此,如果想测量Q值,当Q值大于100时精度非常低。
在矿石收音机中,高频线圈的Q值要求准确测定。它值接影响了矿机的性能。但音频线圈的Q值,则没有过分严格的测量要求。所以本表从一开始就没有在副数上多下功夫,始终坚持采用单片机自带的AD转换器,以便大幅度等化电路结构。
网上流行的俄版电路,其核心部分本表均未采用。
俄版电路采用ICL7135作为AD转换器,精度比STC单片机自带的AD性能好很多。然而,经过多次计算分析,结论是用自带AD也可以得到优于1%的主参数精度,所以最后放弃ICL7135。设计后期,对电路优化设计,很大程度上泥补了STC AD的不足。,
ICL7135的最终精度与芯片质量及积分电路有关,因此要使用ICL7135精度达到4位半表头,也不是很容易。7135的几个电容就足已占去半块PCB板。仿制者,通常用低压的小电容代替,这种情况,AD转换器本身的精度一般是低于0.05%的,最后得到的LCR表也会低于0.1%精度。当我们对LCR表的精度要求特别高时,对电阻的精度要求也高,精密电阻不好找。综合这些因素,最后选STC自带AD,代价是损失少量主参数精度,同时严重损失副参数精度。
信号源是LCR表的一个核心部件,俄版的正弦信号发生器及0、90度方波发生器,其综合性能并不会优于本电路,相反,本电路显得非常简法,仅使用了一组RC滤波器及DDS程序就完成了这两种信号的生成。
相对许多其它形式的LC测量电路,相敏检波器是LCR表特有的。本电路采用开关式相敏检波器,性能良好。实测了几个数据,比我预想的要好。比如,小信号用0度轴检波,OP07输出得到293.5mV,用180轴得到-293.0,这当中包含用OP07的输出失调、万用表正反向测量误差0.1mV。OP07输出失调的主要原因是输出端用3个1N4148二极管升压。但从最终数据看,两次测量理论值应是互为相反数,实测仅误差0.5mV(0.2%),大信号时,误差还更小,本表采用满度4500mV表头输出。
本LCR电桥的相敏检波器依靠单个模拟开关实现,可以抑制偶次谐波,但没有奇次谐波抑制能力。开关导通时间是半个基波周期,偶次谐波在半周期内共有整倍数谐波周期,谐波的直流平均值是零。奇次谐波,在半个基波周期内有N倍又1/2个谐波周期,多余的1/2周期的直流平均值不是零。DDS输出的奇次谐波是很小的。对于1kHz和100Hz,理论3次谐波幅值约为DAC分辨率的1/2,相当于-50dB左右。对于7.8kHz,采用DDS时钟的整数分之一倍,相噪小,然而,由于频率与时钟较接近,PWM型DAC的噪声大,谐波失真较大,所以电路中对DDS输出做了6级针对PWM的RC滤波,最后也使得谐波基本消失(在示波器中,在第5级滤波时,就已经无法发现谐波失真)。
由于来自单片机谐波干扰,有可能造成相敏检波质量下降,电路中的带通滤波器,正好对高次谐波有较强的抑制能力。
控制相敏检波器开关的方波信号,本身也是一种干扰信号,但对于这个低频电桥,它的影响可以忽略。从最终的正交分离能力测试来看,相敏检波器的性能优良,虽然只用了一个电子开关。
二、设计要点:
本LCR表的各级放大器,大多工作在大信号状态,所以要精心设计好放大器,否则容易造成运放过载。
之所以选择大信号,主要还是为了提高抗干扰能力,使得LCR表更容易调试。可以在无屏蔽盒的情况下正常调试。
矿机元件一般都很大个,比如大环天线,直径常常到到1米,用线数十米,天线上的信号也很强。为了更可靠测量,还在电路中加入了带通滤波器。
交流放大器由多级放大器构成,设计时,不论增益开关处于那个状态,应保证第n级运输出信号大于等于第n-1级放大器的输出信号。道理是:当不满足上述条件时,前级可能过载失真,而程序全然不知。在音响系统中,前级调音台过载,可以被电平指示灯显示,也可以被耳朵听出来,这时,我们就可以调大后级功放音量,调小前级调音台的增益,这样就不会失真了。但是,单片机程序没有金耳朵,所以中间级电路本身不得过载,以免造成单片机误判。各运放的最大输出能力相同,所以最好的办法就是后级输出幅度大于等于前级输出,那么过载现象必然引起后级输出过大,进而毫伏表超量程,程序立刻知道电路过载了。
1、表头满度值
表头满度是5.0V,由于OP07运态范围限制及纹波等因素影响,表头满度设计为4.6V,对应950字。
2、相敏检波器增益
检波波器理论灵敏度为2/3.)/(20+4*51)=0.29倍
3、末级直流放大量设计
末级直流放大量过多,不利于提高信噪比,放大量太少,会造成前级过载。
第三级(U2D运放)信号为A,它的最大不失真的幅度为A0,约为3.5V,取保守值为3.0V,表头满度设计为Vo=4.6V,OP07和相敏检波器的直流总增益是K
当正弦信号达到最大不失幅度A0时,须使表头必须满度,以方便判断是否过载,并充分利用表头分辨率。所以K的合理设计值是A0*K&Vo,算得K&Vo/A0=4.6/3=1.5。类似的,在音频功放中,要使功放得到充分的功率输出,功放的增益K要足够大,使得前级满幅时,功放可以超过最大输出Vo。
实际上,“K=Vo/A0”中的Vo指正弦峰值上限。在正交检波输出后,是Vx和Vy两个量,并不直接输了峰值的Vo,要取模计算才得到Vo。即输入信号的模值达到Vo时被认定为表头满度。
为了进一步利用表头分辨力,可以采用Vx或Vy判定表头溢出。但最糟的一种情况是,当被测向量是45度时,最大模值变为1.414V0,所须前级信号也增加了1.414倍才能满度。为了防止前级运放过载(U2D运放超过A0),K值也必须增加1.414倍,因此采用正交量判别表头溢出时,K值须大于1.414*1.5=2.2倍。因此,对于0度或90度信号,A&V0/K,表头溢出;45度信号,A&1.414*V0/K,表头益出。
本电路OP07直流增益是11倍,K=11*0.29=3.2。许可0度或90度信号的A最大值为A=V0/K=4.6/3.2=1.44V。其中,K设计为3.2,比理论下降要求2.2大了40%,这样就留下了足够的余量,前级运放的动态能力余量更大,调试更容易。
4、第三级(U2D运放)放大量设计
本级加了带通滤波器,衰减系数是1/3,7.8k档衰减系数是1/2.6。计算时按1/3计,7.8k档结合信号源另外调整。
7.8k档设计为1/2.6衰减系数,是为与信号源幅值配合。
为了使得本级放大倍数大于1,所以运放至少要补偿带通滤波器的衰减。
本级是可控增益的,最小放大倍数设计为1/3*(13/3) = 1.44倍
通过开关切换,两档增益是3倍关系。
5、第二级(U2C运放)放大量设计
本级也是可控增益,最小放大为1倍(无电压放大功能)
通过开关切换,两档增益是10倍关系。
6、第一级(U2A和U2B运放)设计
直接采用俄版电路设计。电路增益是5倍。
7、DDS输出信号许可最大值
上面已算得,相敏检波许可最大电压输入值是1.44V
前两级最小增益是1.44*5=7.2倍
因此信号源程序最大幅度限制为1.44V/7.2=200mV
由于信号源与坐标轴之间不一定正好是0或90度,所以200mV通常不会溢出。
100Hz移相小,容易溢出。为此,第三级输出电容采用0.22uF,对100Hz有小量衰减,所以100Hz的DDS输出采用200mV不会溢出。
最后信号源输出设计为:
100Hz,有效值140mV,峰峰值200mV
1kHz,有效值130mV,峰峰值180mV
7.813kHz,有交值0.10V,峰峰值140mV
调试电路时,测定一下信号源运放输出端的信号强度,须比小于等于以上电压设计值。如果比以上值高了10%,本LCR表不能可靠工作。
8、V/I变换器与差动输入的关系
当频率高时,V/I变换器运放的内部增益下降,运放负输入端对地电压不是零,当电流较大时,“虚地”电压也可高达数毫伏。此时,如果不采用差动法检测量桥臂上的电压,误差会很大。为了对付这个问题,差动三运放须有较强的共模抑制能力,两臂上的2k与10k电阻要尽量严格对称。
对于上臂电压,为了消除导线电抗影响,也是需要差动放大的。
有些精简版的LCR电桥,不采用差动三运放,而改用一个运放,这种情况下,电桥精度略有下降,而且只能用于较低频率的大Zx小电流(如1kHz以)条件下测定Zx
单片机自带的AD只有10bit,用10倍步进,会影响精度。
为了改善这个问题,放大器可控增益的调节以3倍左右的倍率关系步进。
其次,借助AD的高速能力及信号噪声,进行10倍过采样,AD的分辨力提高约1bit。
STC自带的AD,不能测量小于3字的信号。所以,电路中给输出直流信号加了偏置电压。这个偏置电压是利用OP07输出端的2k电阻与10欧电阻分压实现的。
10、V/I变换器与信号源的关系。
V/I变换器也存在过载问题,也要消除它,虽然人工切换量程时可以判断它是否过载,但对于没有经验的使用者来说,并不容易,因为,用眼睛看失真,不如耳朵听失真来得容易。
V/I变换器过载的原因有二,首先,那个运放的反馈回路接了500欧左右内阻的电子开关,它相当于输出衰减器;其次,TL082内部串接了200至300欧电阻,也是一个限流衰减。这样一来,100欧档为了得到0.472V,TL082内部电压将是0.472*(500+300+100)/100 = 4.25V,此时,内部过载。
为了解决过载问题,采用以下方法:考虑到信号源TL082也有过载问题,所以上臂限流电路与下臂电阻电路设计成对称的电路,那么只要信号源不过载,V/I变换器也不过载。
此外,V/I变换器的20欧档,采用了机械输助开关,那么相同电流下,更不容易过载的。
11、信号源
前述,V/I与限流器采用对称结构时,Zx短路,V/I变换器输出端的电压与信号源输出端是一样的。信号源不过载,V/转换器也不过载。
信号源采用DDS,频率精度高。可以输出任意频率。本表采用100Hz、1kHz、7.813Hz
不使用10kHz的原因是:DDS的钟频采用62.5k,输出频率10kHz时,频率已经比较接过钟频了,相位噪声大。为了消除相噪,采用钟频的2^n分之一的频率,这里使用1/8钟频。
信号输出加出了简单的RC滤波器,对于1kHz以下的频率输出,此滤波器相当于6阶滤波器,可以得到良好波形。对于7.813kHz,到了第5阶输出,在示波器中观察已基本看不到失真,到了第6级输出,已经是无法直接观察到失真。
由于不是理想的高阶滤波器,Q值低,所以对7.813kHz的衰减很严重,为了保持100Hz、1kHz、7.813kHz三档输出幅度相对一致,利用单片机控制电子开关对1kHz和100Hz降幅。
三、使用要点:
菜单1:开机启动默认菜单
使用8键加1键切换到菜单1
使用8键加2键切换到菜单2
使用8键加3键切换到菜单3
1键:显示串联电抗X
2键:显示串联电阻R
3键:显示串联电感L
4键:显示串联电容C
5键:显示Q值
6键:频率切换,100Hz时,指示灯亮起,1kHz时不亮
7键:量程切换,4个指示灯轮跳
8键:菜单切换键,按下该键时,显示当前所处的菜单号。
显示单位表示:
10的-12次方,显示为“P”
10的-9次方,显示为“n”
10的-6次方,显示为“u”
10的-3次方,显示为“大n”
10的0次方,显示为“小O”
10的3次方,显示为“三横”
10的6次方,显示为“d”
10的9次方,显示为“G”
单位如果含有小数点,说明是容性电抗。
矿机高阻抗变压器,在1kHz时,有的会表现为容抗,而不是感抗。
接入Zx后,先设置好频率,然后选择合适的档位。使得被测Zx的阻抗应与下臂电阻匹配,以取得高精度。设下臂电阻是A,那么Zx在A/30&Zx&30A范围内可得到准确的结果。如果事先不知道Zx的估值,可以选择1k档或10k档测量,得到被测Zx的R与X。当Zx是电感或电容时,其R小X大,因此根据X的测值重新选择档位。当Zx是电阻,则R大X小,下臂应与R匹配,根据R选择档位。
残余电抗。本表存在残余电抗。为此,测量pF级电容,先不接被测电容,测量出本底电容,我的LCR表本底是3.5pF,然后接上电容测量,若测得23.3pF,那么实际电容就是23.3-3.5=19.8pF,此法与Q表测得的电容比对,1字不差。
测小电阻时,切换到20欧档,按下机械开关,可以增加灵敏度数倍。测量后,弹出开关,以免影响其它档。
扩屏显示小数位:按下当前显示值对应的键,就会显示为四位模式,但“单位”不显示了。再按一下1至5任意键,退出四位模式。本LCR表达不到4位的精度,所以通常无需采用4位显示。有时显示1.xx的数值,觉得精度不够,可以按此法扩展一下位数。
显示四个小数点,表示溢出。
显示“Err”,表下臂或上臂出来零值。
本表不设置调零功能。必要时用户需要自行减去零值。
测量时,先检查Zx一下X或R的值是否在量程范围之内,如果超主量程,应切换档位。
1键:显示并联电抗X
2键:显示并联电阻R
3键:显示并联电感L
4键:显示并联电容C
5键:显示Q值
6键:频率切换,100Hz时,指示灯亮起,1kHz时不亮
7键:量程切换,4个指示灯轮跳
8键:菜单切换键
单位显示同上
这是调试菜单
1键:增益切换键,切换时,显示屏暂时跳出置位信号数秒钟,
3键:K3切换键,切换时,显示屏暂时跳出置位信号数秒钟
4键:相位旋转键,切换时,显示屏暂时跳出置位信号数秒钟,相位旋转的顺序是0度、180度、90度、270度
本菜单下,屏显内容是AD的读值。
在此菜单下,可以检测检波非线性。方法是:Zx接上一个10k电阻,切换到菜单3,用1键把增益置为0位,利用3键和4键,找一个读值为30以下的。接下来,1键更改增益,并记录读值。例如,得到32,92,302,902,理论增益关系是1、3、10、30,所以,以上显示值说明检波器线性度良好,但存在0点误差2字。以上数据统一减2字就正确了。在菜单4中零点误差改正值。
修改零点误差改正值。
1键(X键):数值增加0.5
2键(R键):数值减小0.5
3键(L键):保存键
4键(C键):清零键
首次使用时,请设置好该值,否则LCR表无法正常工作。我的LCR表,改正值是负2.0
四、制作要点:
V/I变换器上的4个电阻要精确,最好优于0.5%
中间放大器,关系到1:3:10:30增益切换关系的4个电阻(2k、18k、1k、2k),比值关系要准确。请使用4位半的表筛选。
5倍放大器,上、下臂的热端关联的2k与10k电阻要准确,确保上下臂增益相同。冷端(虚地)的2k与10k电阻,不要求精度很高,用1%精度问题不大。当然,如果这几个精度全部高精度,不但上下臂增益相同,而且共模抑制能力强。
电源变压器使用8V*2或9V*2,其中无需加散热器。接变压器的排针与接下载线的排针最好区别开,如果不区分,万一把9V电源插到下载线排针,单片机或电路有烧的可能,当然通不会烧的。
接线完成后,检查的关键是:每个IC电源和地线有没有接错。电源没接错,IC通常不会烧。
飞线多,不小心就会错,所以9V变压器使用小容量的,万一接错或碰电,由于变压器功率不足,反而会保护电路。
单片机的电压不可过高,如果高于5.5V,有危险。比如,不小心加入12V电压,单片机必烧。所以各个IC的供电是关键。
制作工艺按照单响的工艺就足够了。
同时注意两个桥臂信号通路的对称性。
TL082负载能力测试:在信号输出运放的输出端,对地接51欧电阻,三个频率档位下输出的波形不得有失真,直接用示波器观察即可。测试完成后,拆除51欧电阻。
制作时,应注意TL082信号输出的幅值,是否在设计规定的范围内。
五、关于误差
基本量程精度是0.5%,精心制作,也可达0.25%
Zx电抗在下臂电阻的1/30至30倍时,1kHz档精度达到0.5%,实际上,1kHz下做了一个小测试,测定了100至200k的十个电阻,精度全部达到0.12%
Zx电抗在下臂电阻的1/30至30倍之外时,误差变大。
Zx在30倍与1/30倍之内,可按300字的精度测算精度,即0.3%,做为误差指标,最好留下余量,即0.5%,个人建议使用1%,因为采用色环电阻,推荐精度是1%,这样取材最方便。1%精度电阻,经过简单筛选,很容易达到0.5%的精度,那么最终LCR表的精度会优于1%,如果不筛选,直接使用1%精度电阻,将不易得到1%精度的电桥精度,要碰运气了。
本电桥最小分辨阻抗是表头测定电压时的分辨力决定的,下臂按300字保守估计,那么上臂1字分辨力对应的阻抗是下臂电阻的1/(300*30)≈1/10000
20欧档的最小分辨阻抗是20/10000=2毫欧。
1k欧档的最小分辨阻抗是=0.1欧。
同样道理,最大阻抗分辨力为量程电阻的10000倍
100k欧档的最大分辨阻抗是100k*10000=1G欧左右。
由于对电桥做了一些算法及电路参数的改进,实际上分辨力比上述估计要好3至5倍。
在距离平衡点1/300及300倍处,误差加大10倍,如果再超此范围,直接采用零点非线性误差1至2字即可,1字误差相当于满度值的1/(300*30)=1/10000,如1k欧档,固有常数误差是=0.1欧,20欧档为20/10000=2毫欧。
电感分辨力约为2 mΩ/(6.28*7.8kHz)=0.04uH
频率7.8kHz时,电容分辨力约为1/(6.28*7.8kHz*1G欧) = 0.02pF
Q值精度比较特殊。显示为98,并不是说它的精度是1%,我们对它取倒数后,保留到小数点以下第三位,变成0.010,小数点以下第三位就是误差位,约两三字误差。即0.010的误差可以达到30%,对应的Q=98的误差也高达30%
Q值的误差实际上是X和R二者中精度最低的那个。X与R在这个LCR表,是用同等增益系数放大器取得的。设X在某量程处取得良好精度,对于Q=100,R将在1/100量程处取得结果。表头的平均读值安400字计算,那么1/100量程处只有4字,此时,R的误差将高达20%至50%(一到两字误差)
这个LCR表的高Q值测定,与Q表比较,性能还有很大距离。
Zx高Q,测量电阻分量误差大,测电抗分量误差小。反之,Zx低Q,测电阻分量误差小,电抗误差大。低Q时,电抗分量相对电阻分量很小,当电阻分量满度时,电抗分量的读数很小,受表头分辨能力、正交分离度等影响,电抗分量测量精度下降,在Q值大于0.1时,且Zx远离测量极限状时,电抗测量仍有较高精度。
测量感量,如果与阻抗法测量比较,设频率为f时,一个Q=0.1的电感,用阻抗法测量电抗需要30倍f才能将这个电感测到同样的精度(假设频率上升过程中,电阻分量保持不变)。 也就是说,电桥的工作频率虽然只有7.8kHz,但它相当于100kHz至500kHz频率下阻抗法测电抗的效果,所以可以准确的测量小电感的电感量。
小电感最小测量约0.1uH,测量0.5uH电感,误差可达5%至10%,测量1uH电感,误差小于5%
下表是洞洞板LCR表电阻测量精度实测(没有采用过采样算法,精度稍低一些):
被测电阻& & & & 档位& & & & 100Hz& & & & 1kHz& & & & 7.8kHz
2.5mΩ& & & & 20欧& & & & 2.2 mΩ& & & & 3.1mΩ& & & & 2.2 mΩ
7mΩ& & & & 20欧& & & & 7 mΩ& & & & 7 mΩ& & & & 7 mΩ
14mΩ& & & & 20欧& & & & 14 mΩ& & & & 13 mΩ& & & & 13 mΩ
223 mΩ& & & & 20欧& & & & 222 mΩ& & & & 222 mΩ& & & & 222 mΩ
3.129Ω& & & & 20欧& & & & 3.13& & & & 3.13& & & & 3.12
50.46& & & & 20欧& & & & 50.70& & & & 50.48& & & & 50.65
50.46& & & & 1k欧& & & & 50.50& & & & 50.35& & & & 50.56
100.45& & & & 1k欧& & & & 100.4& & & & 100.2& & & & 100.3
301.3& & & & 1k欧& & & & 301.5& & & & 301.6& & & & 302.3
100.3k& & & & 100k& & & & 100.2k& & & & 100.2k& & & & 100.3k
2.210M& & & & 100k并& & & & 2.213M& & & & 2.205M& & & & 2.187M
4.436M& & & & 100k并& & & & 4.46M& & & & 4.42M& & & & 4.30M
Zx开路时,100k档并联残余电阻是2.4GΩ(100Hz),2GΩ(1kHz),127MΩ(7.8kHz),使用并联法测量电阻,所得阻值实际上是残余电阻与被测电阻的并联值。
上表2.21M欧7.8kHz测量,并联值是2.21//127 = 2.17M欧,实际显示为2.19M
上表4.44M欧7.8kHz测量,并联值是4.44//127 = 4.30M欧,实际显示为4.30M
串联法测量高阻值电阻,在7.8kHz档,受残余导抗影响,测值误差很大。因此,测量高阻值电阻,建议使用1kHz频率并联法测量,而不应使用串联法,也不要使用7.8kHz。
L、C的测量精度,与Q和X的测量精度有关。当Q大于1时,测量精度可以参考电阻测量精度。当Q小于1时,L、C的测量精度比纯电阻测量精度低。
测量小电感时,由于频率过低,是不能完全反应高频状态的。例如,用5米长0.38mm线径漆包线绕的空心线圈,10kHz时的电感量是35.5uH,到了1MHz表现出来的电感量会比大于该值,即在10kHz与1MHz两个频率下表现出来的电抗是不同的。1MHz频率下铜线的趋肤深度是0.066mm,10kHz频率下趋肤深度是0.66mm,在10kHz下,趋肤深度远大于这条导线半径,所以导线的内自感是0.05uH*5=0.25uH,当频率达到1MHz,内自感变为2*0.066/(0.38/2) * 0.25uH = 0.17uH,这就是说,低频测量多测出了0.08uH的内自感。线圈有分布电容及对地分布电容约2pF至3pF,这会使它在1MHz时表现出的感抗变大0.5%的。频率高了,线圈中各点的电流不是同步建立的,这些可以归算为分布电容的影响。电感绕线用的传导铜线的长度大,容易受到各种因素影响,所以不必期望低频法测得的电感量外推到高频还会有相同的精度。
六、残余电容问题:
数字电桥存在一些残余电容,残余电容是有损耗的,即含有电阻分量。不同频率档位,残电容基本相同,但残余损耗电阻是不同的。1kHz与100Hz,残余并联损耗电阻是G欧级的。测量10M欧以下的电阻,无需修正即可得到1%的精度。7.8kHz,残余并联损耗约150兆欧。
在1kHz时,残余损耗电阻相当于并联在被测Zx两端,因此,当我们测量一个电阻,如果试图修正结果,应使用并联原理修正。这时,请使用并联法测量电阻。
残余电容的容量,在1kHz和7.8kHz下,不管是串联还并联,容量是相同的,这是因为残余电容的Q值较大,所以串或并联残余电容相同。测量小电容时,应减去残余电容,才是真正的电容值。
100Hz下,通常无需考虑残余电容问题。
七、DDS信号发生器
这是本LCR表的使用的核心技术。利用它实现了精确的相位控制,并输出正弦波。
DDS即“直接数字频率合成器”
一般采用专用DDS芯片,以取得高性能。使用专用DDS,如AD9833等芯片,价格贵,而且是MSOP封装,焊接不易,给DIY带来了一些障碍。此外,AD9833与单片机结合,实现0度、90度、180度、270度移相方波,也是比较麻烦的。
现在的单片机,速度快,可以直接合成音频波形,同时精确输出移相方波。
单片机DDS算法原理:
正弦函数y=sin(x),其中相位量x与时间成正比。即相位x随时间增加而线性增加。
先产生随时间线性变化相位序列x,同时利用查表法得到sin(x)的值,并利用DAC将sin(x)的值即时输出。
在单片机中设置定时器,每隔dT时间,相位累加dX,就得到x,x+dX,x+2dX,x+3dX……的相位序列。每产生一个相位,同时输出相应的sin(x)值。
算法确定后,接下来就看硬件上是否支持以上算法,如果支持,写出相应程序即可。
在单片机的内存中,存放了方波函数值查询表、正弦波函数值查询表,dT中断来到时,先输出x对应的正弦波数值,接着在另一个端口马上输出x+0度(或x+90度)方波函数值。这样就得到了LCR电桥所需的两个信号源。当前输出方波是x+0度还是x+90度,dT中断期间,不要使用if语句来判断,而应写面“x+初相变量”的形式,初相变量是事先设定好的。这样,x+0度方波与x+90度方波之间的相差就是严格的90度关系。
为了使波形相位稳定,dT的中断优先级须置为最高级别。
STC12C5A60S2,内置了DAC,并且dT可以设置得较小。
双面PCB板孔洞疏通:电阻位置焊错了,得取出重重新焊接。取出后,焊盘被堵,可能造成其它元件(如集成电路)安装不了,这时得疏通焊孔。可以使用“现场”工具来解决:平时剪下来的电阻引线不要扔,在烙铁加热下,把电阻引线穿进洞中。控制好温度,同时让电阻线只往一个方向运动,直到引线取出,这时孔内的焊锡就会被带出来。
焊接鳄鱼夹:把它夹在一个镊子上焊接。
双面板拆集成:1、引脚集体加热,同时拆。2、烙铁功率小,集体加热不灵。把引脚全部剪断,一脚一脚拆,这是万能的,不伤害PCB板的。
集成电路一般不会焊错,电阻容易焊错。
九、元件选配及调试
LCR1.0 PCB板上有一个错误。从PCB板的背面看(没有标注元件文字的那一面),7805的输入端,引出了两条线,一条接到整流二极管,另一条接到地线去了(长度约0.5cm),显然发生了错误。请把这条0.5cm的线割断,改接到7805的第二脚。
首先安装调的元件是电源部分,而不是其它元件。电源不正常,如输出电压过高,很容易把单片机烧掉,到时就麻烦了。在双面板上取下集成电路,不是很容易。所以,电源调试正常了,再安装其它元件。变压器请使用小功率的,那么调试过程中,万一短路什么的,通常不烧器件的。
电路上的元件参数有改动,请按新版PCB的标注安装。
机械开关,按下时启动20欧档输助功能,请注意安装方向。
OP07输出接了一个2k电阻。由于新版电路还利用10欧电阻加了偏置电压,而PCB板是上星期制作的,没有偏置。建议这样解决问题:2k电阻与10欧电阻串联后,变成一个直插元件,插入原来的2k电阻孔,要注意方向,串联体的2k电阻引脚接电源端,10欧电阻接1N4148端。再取100k电阻,从串联体电阻的中间连接头直接飞到104电容,与104电容连接的那个电阻孔可以利用,在PCB板正面飞过去。注意,这个100k电阻两引脚的对地阻抗是不同的,接104电容的那一脚对地是高阻抗的,所以引线要短一点,另一头是低阻抗的,长还是短无所谓。原PCB板上相应的100k电阻也标错了,在单片机左边,被标注为1k欧。通过飞线安装100k电阻,PCB板上当然就不要再装这个100k电阻了。
装完后,应检查TL082信号输出是否与设计值相同,偏小10%是可以的。偏大10%则不可以。
菜单7,直接采用负2.0(即2.0的相反数),估计没有问题。
电路中的电源滤波小电容,采用瓷片电容或独石电容。
接P1.0口的那两个104电容,采用体积小的涤纶电容或独电容。最好,测定一下它的漏电情况,测量方法是:电容一脚接到5V源,另一脚接数字万用表电压档正极,万用表负极接地,数字万用表最终显示的数值小于1mV,说明它的漏电很小。几个mV漏电不要紧。
其它的最好多使用涤纶电容。
除电解电容外,LCR表上的阻容元件的参数,几乎都不能做改动,所有的电阻的阻值关系,不单单是“调试”出来的,它经过了理论的计算与调试验证得到的,如果因为手上没有合适的阻值的元件,而改动参数,多半会影响电桥的精度。
一定要看明PCB板上各元件对应电路图中的哪个元件,才能明白哪些电阻要求精确。
电阻精度要求:
1、除单片机部分,其它与交流信号有关的,须全部使用1%金属膜电阻,或精度更高的电阻。
2、4个下臂电阻,须筛选到0.1%精度以上。
3、10倍增益切换运放的反馈电阻,2k和18k两电阻,须是9.000倍关系,即不要求电阻精确,要求比值精确,筛选到0.05%精度是比较容易的。
4、3倍增益切换运放的反馈电阻,1k和2k两电阻,须是2.000倍关系,即不要求电阻精确,要求比值精确,筛选到0.05%精度是比较容易的。
5、5倍增益运放的电阻,共有8个,四个2k和四个10k电阻
上臂的2k电阻(负输入)与下臂2k电阻(负输入),应严格相同,匹配到0.05%至0.1%
上臂的10k电阻(负反馈)与下臂10k电阻(负反馈),应严格相同,匹配到0.05%到0.1%
上臂的2k电阻(正输入)与下臂2k电阻(正输入),1%精度,此电阻精度,影响共模抑制,对高频大电流很重要
上臂的10k电阻(正臂)与下臂10k电阻(正臂),1%精度,此电阻精度,影响共模抑制,对高频大电流很重要
十、元件列表
三运放仪放电路阻容
104独石2个
224/100V涤纶电容,4个
1N4148,4个
上臂阻容:
1k,1,10k,100k,5.1k各1个
发光二极管6个
自锁小开关1个
下臂阻容等:
20,100,1k,10k,100k,各1个
1N4148,2个
可控增益运放的阻容
2k,18k,各1个
1k,2k,10k,各1个
1n,10n,100n涤纶,各2个
104独石2个
224涤纶电容1个
检波器及直流放大:
473涤纶,2个
104涤纶1个
474涤纶1个
104独石2个
100uF,1个
1N4148,3个
DDS滤波及信号输出:
160欧,1个
4.7n涤纶1个
47n涤纶2个
22n涤纶,1个
10n涤纶,4个
10uF电解,1个
1N4148,2个
单片机及电源:
轻触小开关,8个
32MHz晶振,1个
3V峰鸣器,1个
100欧,1个
2.2k电阻,8个
5.1k电阻,2个
LED共阳4位,1个
100uF电解3个
10uF电解1个
8050三极管,2个
8550三极管,1个
7805三极管,1个
7905三极管,1个
1000uF,2个
1N4007,4个
3M铜柱,5套
集成电路:
CD4052,CD4053,TL084,各2个
STC12C5A60S2,TL082,OP07各1个
品牌四位半万用表1块
示波器一台(可选)
提示: 作者被禁止或删除 内容自动屏蔽
好资料!记号一下。
本坛的又一力作。期待中。
弓虽大并不在于设计出了一个电路图,而是这种细致的设计过程,每一部分电路设计思路、计算,对各种问题的考虑和解决方法,对测试精度的估计和计算。
一个字:严谨!
大家DIY要是都能这么考虑问题,过不了一年大家的水平都会突飞猛进。
换贴子啦?!继续顶!
力作,继续顶
相当精细,力作,精品!必须支持!
好资料!记号一下
相当强大,讲解的太好了。
LZ的文章个个是精品啊。
可惜不会STC啊
有套件吗????
上套件,上1602
Powered by

我要回帖

更多关于 游戏王卡牌生成器 的文章

 

随机推荐